Tom 3, Nr 2 (2018)
Artykuł przeglądowy
Opublikowany online: 2018-08-31

dostęp otwarty

Wyświetlenia strony 1538
Wyświetlenia/pobrania artykułu 4973
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Programowanie płodowe

Żaneta Kimber-Trojnar1, Aleksandra Marciniak2, Jolanta Patro-Małysza1, Beata Marciniak1, Grażyna Mielnik-Niedzielska2, Bożena Leszczyńska-Gorzelak1
Ginekologia i Perinatologia Praktyczna 2018;3(2):58-63.

Streszczenie

Programowanie wewnątrzmaciczne zachodzi podczas rozwoju zarodkowego i płodowego, które są uznawane za
krytyczny okres zarówno w procesie tworzenia tkanek i narządów, jak i w etiologii chorób cywilizacyjnych. Dzieje
się tak zwłaszcza wtedy, gdy wpływ niekorzystnego środowiska nakłada się na genetyczną predyspozycję. Koncepcja
programowania płodowego zakłada, że zaburzenia metaboliczne i nieprawidłowe odżywianie ciężarnej mogą
mieć trwały i międzypokoleniowy wpływ na zdrowie potomstwa i rozwój chorób cywilizacyjnych, takich jak otyłość,
cukrzyca, czy choroby układu sercowo-naczyniowego.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Crispi F, Miranda J, Gratacós E. Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. Am J Obstet Gynecol. 2018; 218(2S): S869–S879.
  2. Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. 1992. Int J Epidemiol. 2013; 42(5): 1215–1222.
  3. Salam RA, Das JK, Bhutta ZA. Impact of intrauterine growth restriction on long-term health. Curr Opin Clin Nutr Metab Care. 2014; 17(3): 249–254.
  4. Perrone S, Santacroce A, Picardi A, et al. Fetal programming and early identification of newborns at high risk of free radical-mediated diseases. World J Clin Pediatr. 2016; 5(2): 172–181.
  5. Marciniak A, Patro-Małysza J, Kimber-Trojnar Ż, et al. Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol. 2017; 56(2): 133–138.
  6. Hales C, Barker D. The thrifty phenotype hypothesis. Br. Med. Bull. 2001; 60(1): 5–20.
  7. Berry DC, Boggess K, Johnson QB. Management of Pregnant Women with Type 2 Diabetes Mellitus and the Consequences of Fetal Programming in Their Offspring. Curr Diab Rep. 2016; 16(5): 36.
  8. Saffery R, Novakovic B. Epigenetics as the mediator of fetal programming of adult onset disease: what is the evidence? Acta Obstet Gynecol Scand. 2014; 93(11): 1090–1098.
  9. Kwon EJ, Kim YJu. What is fetal programming?: a lifetime health is under the control of in utero health. Obstet Gynecol Sci. 2017; 60(6): 506–519.
  10. Marco A, Kisliouk T, Tabachnik T, et al. Overweight and CpG methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not. FASEB J. 2014; 28(9): 4148–4157.
  11. Ornoy A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod Toxicol. 2011; 32(2): 205–212.
  12. Edvardsson VO, Steinthorsdottir SD, Eliasdottir SB, et al. Birth weight and childhood blood pressure. Curr Hypertens Rep. 2012; 14(6): 596–602.
  13. Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012; 41(1): 10–13.
  14. Seremak-Mrozikiewicz A, Barlik M, Drews K. Programowanie wewnątrzmaciczne jako przyczyna chorób przewlekłych wieku dorosłego. Ginekol Pol. 2014; 85: 43–48.
  15. Lester BM, Marsit CJ. Epigenetic mechanisms in the placenta related to infant neurodevelopment. Epigenomics. 2018; 10(3): 321–333.
  16. van Abeelen AFM, Elias SG, Bossuyt PMM, et al. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes. 2012; 61(9): 2255–2260.
  17. de Rooij SR, Painter RC, Holleman F, et al. The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am J Clin Nutr. 2007; 86(4): 1219–1224.
  18. Ekamper P, van Poppel F, Stein AD, et al. Independent and additive association of prenatal famine exposure and intermediary life conditions with adult mortality between age 18-63 years. Soc Sci Med. 2014; 119: 232–239.
  19. Ponzio BF, Carvalho MH, Fortes ZB, et al. Implications of maternal nutrient restriction in transgenerational programming of hypertension and endothelial dysfunction across F1-F3 offspring. Life Sci. 2012; 90(15-16): 571–577.
  20. Bertram C, Khan O, Ohri S, et al. Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic-pituitary-adrenal function. J Physiol. 2008; 586(8): 2217–2229.
  21. Raychaudhuri N, Raychaudhuri S, Thamotharan M, et al. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem. 2008; 283(20): 13611–13626.
  22. Snoeck A, Remacle C, Reusens B, et al. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990; 57(2): 107–118.
  23. Sedaghat K , Zahediasl S , Ghasemi A Intrauterine programming Iran J Basic Med Sci. 2015; 18: 212–220.
  24. Sathishkumar K, Balakrishnan M, Chinnathambi V, et al. Temporal alterations in vascular angiotensin receptors and vasomotor responses in offspring of protein-restricted rat dams. Am J Obstet Gynecol. 2012; 206(6): 507.e1–507.10.
  25. Tsukuda K, Mogi M, Iwanami J, et al. Influence of angiotensin II type 1 receptor-associated protein on prenatal development and adult hypertension after maternal dietary protein restriction during pregnancy. J Am Soc Hypertens. 2012; 6(5): 324–330.
  26. Khandelwal P, Jain V, Gupta AK, et al. Association of early postnatal growth trajectory with body composition in term low birth weight infants. J Dev Orig Health Dis. 2014; 5(3): 189–196.
  27. Jousse C, Parry L, Lambert-Langlais S, et al. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J. 2011; 25(9): 3271–3278.
  28. Cianfarani S, Germani D, Branca F. Low birthweight and adult insulin resistance: the. Arch Dis Child Fetal Neonatal Ed. 1999; 81(1): F71–F73.
  29. Jou MY, Lönnerdal Bo, Philipps AF. Maternal zinc restriction affects postnatal growth and glucose homeostasis in rat offspring differently depending upon adequacy of their nutrient intake. Pediatr Res. 2012; 71(3): 228–234.
  30. Muthayya S, Kurpad AV, Duggan CP, et al. Low maternal vitamin B12 status is associated with intrauterine growth retardation in urban South Indians. Eur J Clin Nutr. 2006; 60(6): 791–801.
  31. Yajnik CS, Deshpande SS, Jackson AA, et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008; 51(1): 29–38.
  32. Lewis RM, Petry CJ, Ozanne SE, et al. Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring. Metabolism. 2001; 50(5): 562–567.
  33. Yan X, Huang Y, Zhao JX, et al. Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. Int J Obes (Lond). 2013; 37(4): 568–575.
  34. Frias AE, Grove KL. Obesity: a transgenerational problem linked to nutrition during pregnancy. Semin Reprod Med. 2012; 30(6): 472–478.
  35. Heerwagen MJR, Miller MR, Barbour LA, et al. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010; 299(3): R711–R722.
  36. Dabelea D, Crume T. Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes. 2011; 60(7): 1849–1855.
  37. Guénard F, Deshaies Y, Cianflone K, et al. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci U S A. 2013; 110(28): 11439–11444.
  38. Hou M, Chu Z, Liu T, et al. A high-fat maternal diet decreases adiponectin receptor-1 expression in offspring. J Matern Fetal Neonatal Med. 2015; 28(2): 216–221.
  39. Fan L, Lindsley SR, Comstock SM, et al. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes (Lond). 2013; 37(2): 254–262.
  40. Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, et al. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front Physiol. 2018; 9: 602.
  41. Xu J, Ye J, Wu Y, et al. Reduced fetal telomere length in gestational diabetes. PLoS One. 2014; 9(1): e86161.
  42. Smith CJ, Ryckman KK. Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab Syndr Obes. 2015; 8: 295–302.
  43. Drake AJ, Liu L. Intergenerational transmission of programmed effects: public health consequences. Trends Endocrinol Metab. 2010; 21(4): 206–213.
  44. Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987; 99(3): 371–382.
  45. Cardozo E, Pavone ME, Hirshfeld-Cytron JE. Metabolic syndrome and oocyte quality. Trends Endocrinol Metab. 2011; 22(3): 103–109.
  46. Zambrano E, Martínez-Samayoa PM, Bautista CJ, et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol. 2005; 566(Pt 1): 225–236.
  47. Dowse GK, Zimmet PZ, Finch CF, et al. Decline in incidence of epidemic glucose intolerance in Nauruans: implications for the. Am J Epidemiol. 1991; 133(11): 1093–1104.
  48. Timmermans S, Steegers-Theunissen RP, Vujkovic M, et al. The Mediterranean diet and fetal size parameters: the Generation R Study. Br J Nutr. 2012; 108(8): 1399–1409.
  49. Lillycrop KA, Phillips ES, Jackson AA, et al. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005; 135(6): 1382–1386.
  50. Tang C, Marchand K, Lam L, et al. Maternal taurine supplementation in rats partially prevents the adverse effects of early-life protein deprivation on β-cell function and insulin sensitivity. Reproduction. 2013; 145(6): 609–620.