Tom 15, Nr 1 (2023)
Artykuł przeglądowy
Opublikowany online: 2024-05-28
Wyświetlenia strony 35
Wyświetlenia/pobrania artykułu 2
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Przyszłość badań przesiewowych w kierunku raka jelita grubego: od rozwiązań uniwersalnych po indywidualizację

Tim Kortlever1, Manon van der Vlugt1, Evelien Dekker1
DOI: 10.5603/gek.100420
Gastroenterologia Kliniczna 2023;15(1):80-96.

Streszczenie

Badania przesiewowe w kierunku raka jelita grubego (CRC) i zmian przedrakowych, zaawansowanych gruczolaków (AA), skutecznie zmniejszają śmiertelność z powodu tego nowotworu. Metody badań przesiewowych w kierunku CRC różnią się jednak zależnie od kraju. Najskuteczniejsza metoda badań przesiewowych z punktu widzenia pacjenta to pierwotna przesiewowa kolonoskopia. Jest jednak kosztowna, a odsetek pacjentów poddających się temu badaniu w całej populacji pozostaje stosunkowo niski. Powtarzane, przesiewowe badanie immunochemiczne kału (FIT) jest nieinwazyjną i niedrogą metodą kwalifikacji do kolonoskopii osób z grupy wysokiego ryzyka zachorowania na CRC. Badanie immunochemiczne kału nie jest jednak doskonałe, mimo szerokiego zastosowania i zwykle wysokiego odsetka osób, u których się je wykonuje. Czułość FIT w przypadku zaawansowanej neoplazji (AN) jest niska, natomiast odsetek wyników fałszywie dodatnich — stosunkowo wysoki. Prowadzi to do niepotrzebnego wykonywania kolonoskopii, niepokoju pacjentów i zwiększonego ryzyka wśród osób z pozytywnym wynikiem FIT. Należy opracować nowe strategie w celu poprawy skuteczności badań przesiewowych w kierunku CRC. W ubiegłych latach przeprowadzono wiele badań poświęconych różnym metodom badań przesiewowych opartym na ocenie ryzyka oraz analiz modeli ryzyka. Modele te obejmowały wiele czynników ryzyka i/lub biomarkerów umożliwiających ocenę ryzyka zachorowania w określonym punkcie czasowym (przekrojowe modele ryzyka) albo przewidywanie ryzyka rozwoju CRC w przyszłości (longitudinalne modele ryzyka). W niniejszej pracy dokonano przeglądu rozwoju modeli ryzyka dotyczących badań przesiewowych w kierunku CRC i omówiono niektóre wyzwania, które należy pokonać w celu powszechnego wdrożenia tych modeli w istniejących programach badań przesiewowych w kierunku CRC.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3): 209–249.
  2. Levin TR, Corley DA, Jensen CD, et al. Effects of organized colorectal cancer screening on cancer incidence and mortality in a large community-based population. Gastroenterology. 2018; 155(5): 1383–1391.e5.
  3. Brenner H, Bouvier AM, Foschi R, et al. EUROCARE Working Group. Progress in colorectal cancer survival in Europe from the late 1980s to the early 21st century: the EUROCARE study. Int J Cancer. 2012; 131(7): 1649–1658.
  4. Winawer SJ. The history of colorectal cancer screening: a personal perspective. Dig Dis Sci. 2015; 60(3): 596–608.
  5. Hardcastle JD, Thomas WM, Chamberlain J, et al. Randomised, controlled trial of faecal occult blood screening for colorectal cancer. Results for first 107,349 subjects. Lancet. 1989; 1(8648): 1160–1164.
  6. Kronborg O, Fenger C, Worm J, et al. Causes of death during the first 5 years of a randomized trial of mass screening for colorectal cancer with fecal occult blood test. Scand J Gastroenterol. 1992; 27(1): 47–52.
  7. Mandel JS, Bond JH, Church TR, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med. 1993; 328(19): 1365–1371.
  8. Pilonis ND, Bugajski M, Wieszczy P, et al. Participation in competing strategies for colorectal cancer screening: a randomized health services study (PICCOLINO study). Gastroenterology. 2021; 160(4): 1097–1105.
  9. Quintero E, Castells A, Bujanda L, et al. Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening. N Engl J Med. 2012; 366(8): 697–706.
  10. Zhong GC, Sun WP, Wan L, et al. Efficacy and cost-effectiveness of fecal immunochemical test versus colonoscopy in colorectal cancer screening: a systematic review and meta-analysis. Gastrointest Endosc. 2020; 91(3): 684–697.e15.
  11. Yeoh KG, Ho KY, Chiu HM, et al. Asia-Pacific Working Group on Colorectal Cancer. The Asia-Pacific Colorectal Screening score: a validated tool that stratifies risk for colorectal advanced neoplasia in asymptomatic Asian subjects. Gut. 2011; 60(9): 1236–1241.
  12. Kim DH, Cha JM, Shin HP, et al. Development and validation of a risk stratification-based screening model for predicting colorectal advanced neoplasia in Korea. J Clin Gastroenterol. 2015; 49(1): 41–49.
  13. Kaminski MF, Polkowski M, Kraszewska E, et al. A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy. Gut. 2014; 63(7): 1112–1119.
  14. Cai QC, Yu ED, Xiao Yi, et al. Derivation and validation of a prediction rule for estimating advanced colorectal neoplasm risk in average-risk Chinese. Am J Epidemiol. 2012; 175(6): 584–593.
  15. Lin Y, Yu M, Wang S, et al. Advanced colorectal neoplasia risk stratification by penalized logistic regression. Stat Methods Med Res. 2016; 25(4): 1677–1691.
  16. Tao S, Hoffmeister M, Brenner H. Development and validation of a scoring system to identify individuals at high risk for advanced colorectal neoplasms who should undergo colonoscopy screening. Clin Gastroenterol Hepatol. 2014; 12(3): 478–485.
  17. Aniwan S, Rerknimitr R, Kongkam P, et al. A combination of clinical risk stratification and fecal immunochemical test results to prioritize colonoscopy screening in asymptomatic participants. Gastrointest Endosc. 2015; 81(3): 719–727.
  18. Chiu HM, Ching JYL, Wu KC, et al. Asia-Pacific Working Group on Colorectal Cancer. A risk-scoring system combined with a fecal immunochemical test is effective in screening high-risk subjects for early colonoscopy to detect advanced colorectal neoplasms. Gastroenterology. 2016; 150(3): 617–625.e3.
  19. Park CH, Jung YS, Kim NH, et al. Usefulness of risk stratification models for colorectal cancer based on fecal hemoglobin concentration and clinical risk factors. Gastrointest Endosc. 2019; 89(6): 1204–1211.e1.
  20. Soonklang K, Siribumrungwong B, Siripongpreeda B, et al. Comparison of multiple statistical models for the development of clinical prediction scores to detect advanced colorectal neoplasms in asymptomatic Thai patients. Medicine (Baltimore). 2021; 100(20): e26065.
  21. He XX, Yuan SY, Li WB, et al. Improvement of Asia-Pacific colorectal screening score and evaluation of its use combined with fecal immunochemical test. BMC Gastroenterol. 2019; 19(1): 226.
  22. Kortlever TL, van der Vlugt M, Dekker E, et al. Individualized faecal immunochemical test cut-off based on age and sex in colorectal cancer screening. Prev Med Rep. 2021; 23: 101447.
  23. Cooper JA, Parsons N, Stinton C, et al. Risk-adjusted colorectal cancer screening using the FIT and routine screening data: development of a risk prediction model. Br J Cancer. 2018; 118(2): 285–293.
  24. Stegeman I, de Wijkerslooth TR, Stoop EM, et al. Combining risk factors with faecal immunochemical test outcome for selecting CRC screenees for colonoscopy. Gut. 2014; 63(3): 466–471.
  25. Lu M, Wang Le, Zhang Y, et al. Optimizing positivity thresholds for a risk-adapted screening strategy in colorectal cancer screening. Clin Transl Gastroenterol. 2021; 12(8): e00398.
  26. Chen H, Lu M, Liu C, et al. Comparative evaluation of participation and diagnostic yield of colonoscopy vs fecal immunochemical test vs risk-adapted screening in colorectal cancer screening: interim analysis of a multicenter randomized controlled trial (TARGET-C). Am J Gastroenterol. 2020; 115(8): 1264–1274.
  27. Cubiella J, Digby J, Rodríguez-Alonso L, et al. COLONPREDICT study investigators. The fecal hemoglobin concentration, age and sex test score: development and external validation of a simple prediction tool for colorectal cancer detection in symptomatic patients. Int J Cancer. 2017; 140(10): 2201–2211.
  28. Cubiella J, Vega P, Salve M, et al. COLONPREDICT study investigators. Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients. BMC Med. 2016; 14(1): 128.
  29. Grobbee EJ, Schreuders EH, Hansen BE, et al. Association between concentrations of hemoglobin determined by fecal immunochemical tests and long-term development of advanced colorectal neoplasia. Gastroenterology. 2017; 153(5): 1251–1259.e2.
  30. Senore C, Zappa M, Campari C, et al. Faecal haemoglobin concentration among subjects with negative FIT results is associated with the detection rate of neoplasia at subsequent rounds: a prospective study in the context of population based screening programmes in Italy. Gut. 2020; 69(3): 523–530.
  31. Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Colorectal Cancer Study Group. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med. 2004; 351(26): 2704–2714.
  32. Bosch LJW, Melotte V, Mongera S, et al. Multitarget stool DNA test performance in an average-risk colorectal cancer screening population. Am J Gastroenterol. 2019; 114(12): 1909–1918.
  33. Wang J, Liu S, Wang H, et al. Robust performance of a novel stool DNA test of methylated SDC2 for colorectal cancer detection: a multicenter clinical study. Clin Epigenetics. 2020; 12(1): 162.
  34. Kim BC, Joo J, Chang HJ, et al. A predictive model combining fecal calgranulin B and fecal occult blood tests can improve the diagnosis of colorectal cancer. PLoS One. 2014; 9(9): e106182.
  35. de Klaver W, Wisse PHA, van Wifferen F, et al. Clinical validation of a multitarget fecal immunochemical test for colorectal cancer screening : a diagnostic test accuracy study. Ann Intern Med. 2021; 174(9): 1224–1231.
  36. Wong SH, Kwong TNY, Chow TC, et al. Quantitation of faecal improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. 2017; 66(8): 1441–1448.
  37. Bosch S, Bot R, Wicaksono A, et al. Early detection and follow-up of colorectal neoplasia based on faecal volatile organic compounds. Colorectal Dis. 2020; 22(9): 1119–1129.
  38. Naber SK, Knudsen AB, Zauber AG, et al. Cost-effectiveness of a multitarget stool DNA test for colorectal cancer screening of Medicare beneficiaries. PLoS One. 2019; 14(9): e0220234.
  39. Peterse EFP, Meester RGS, de Jonge L, et al. Comparing the cost-effectiveness of innovative colorectal cancer screening tests. J Natl Cancer Inst. 2021; 113(2): 154–161.
  40. Corporation ES. Clinical Validation of An Optimized Multi-Target Stool DNA (Mt-sDNA 2.0) Test, for Colorectal Cancer Screening "BLUE-C" (2019). Dostępne na:. https://ClinicalTrials.gov/show/NCT04144738..
  41. Duran-Sanchon S, Moreno L, Augé JM, et al. Identification and validation of microRNA profiles in fecal samples for detection of colorectal cancer. Gastroenterology. 2020; 158(4): 947–957.e4.
  42. Duran-Sanchon S, Moreno L, Gómez-Matas J, et al. Fecal microRNA-based algorithm increases effectiveness of fecal immunochemical test-based screening for colorectal cancer. Clin Gastroenterol Hepatol. 2021; 19(2): 323–330.e1.
  43. Mo S, Wang H, Han L, et al. Fecal multidimensional assay for non-invasive detection of colorectal cancer: fecal immunochemical test, stool DNA mutation, methylation, and intestinal bacteria analysis. Front Oncol. 2021; 11: 643136.
  44. Hospital C, Shanghai General Hospital SJTUSoM, Area GHoSPN, Hospital SSDC, Hospital SJaDC and Hospital SYDC, et al. A Stool DNA Test for Detection of Advanced Colorectal Neoplasia in Asymptomatic Chinese Community Population (2021). Dostępne na:. https://ClinicalTrials.gov/show/NCT04786704..
  45. Mowat C, Digby J, Strachan JA, et al. Faecal haemoglobin and faecal calprotectin as indicators of bowel disease in patients presenting to primary care with bowel symptoms. Gut. 2016; 65(9): 1463–1469.
  46. Turvill J, Aghahoseini A, Sivarajasingham N, et al. Faecal calprotectin in patients with suspected colorectal cancer: a diagnostic accuracy study. Br J Gen Pract. 2016; 66(648): e499–e506.
  47. Ye X, Huai J, Ding J. Diagnostic accuracy of fecal calprotectin for screening patients with colorectal cancer: A meta-analysis. Turk J Gastroenterol. 2018; 29(4): 397–405.
  48. Limburg PJ, Devens ME, Harrington JJ, et al. Prospective evaluation of fecal calprotectin as a screening biomarker for colorectal neoplasia. Am J Gastroenterol. 2003; 98(10): 2299–2305.
  49. Ross FA, Park JH, Mansouri D, et al. The role of faecal calprotectin in the identification of colorectal neoplasia in patients attending for screening colonoscopy. Colorectal Dis. 2022; 24(2): 188–196.
  50. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Genomics England Research Consortium. Mutational signature in colorectal cancer caused by genotoxic pks E. coli. Nature. 2020; 580(7802): 269–273.
  51. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019; 16(11): 690–704.
  52. Norway CRo and Oslo Uo. Pilot Study of a National Screening Programme for Bowel Cancer in Norway (2012). Dostępne na:. https://ClinicalTrials.gov/show/NCT01538550.
  53. Bosch S, Berkhout DJ, Ben Larbi I, et al. Fecal volatile organic compounds for early detection of colorectal cancer: where are we now? J Cancer Res Clin Oncol. 2019; 145(1): 223–234.
  54. Chandrapalan S, Bosch S, Cubiella J, et al. Systematic review with meta-analysis: volatile organic compound analysis to improve faecal immunochemical testing in the detection of colorectal cancer. Aliment Pharmacol Ther. 2021; 54(1): 14–23.
  55. Gallardo-Gómez M, De Chiara L, Álvarez-Chaver P, et al. Colorectal cancer screening and diagnosis: omics-based technologies for development of a non-invasive blood-based method. Expert Rev Anticancer Ther. 2021; 21(7): 723–738.
  56. Bach S, Sluiter NR, Beagan JJ, et al. Circulating tumor DNA analysis: clinical implications for colorectal cancer patients. A systematic review. JNCI Cancer Spectr. 2019; 3(3): pkz042.
  57. Carter JV, Galbraith NJ, Yang D, et al. Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: a systematic review and meta-analysis. Br J Cancer. 2017; 116(6): 762–774.
  58. Petit J, Carroll G, Gould T, et al. Cell-free DNA as a diagnostic blood-based biomarker for colorectal cancer: a systematic review. J Surg Res. 2019; 236: 184–197.
  59. Molnár B, Galamb O, Kalmár A, et al. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn. 2019; 19(6): 477–498.
  60. Church TR, Wandell M, Lofton-Day C, et al. PRESEPT Clinical Study Steering Committee, Investigators and Study Team. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014; 63(2): 317–325.
  61. Johnson DA, Barclay RL, Mergener K, et al. Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: a prospective multicenter study. PLoS One. 2014; 9(6): e98238.
  62. Wan N, Weinberg D, Liu TY, et al. Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. BMC Cancer. 2019; 19(1): 832.
  63. Kleif J, Jørgensen LN, Hendel JW, et al. Early detection of colorectal neoplasia: application of a blood-based serological protein test on subjects undergoing population-based screening. Br J Cancer. 2022; 126(10): 1387–1393.
  64. Otero-Estévez O, De Chiara L, Rodríguez-Berrocal FJ, et al. Serum sCD26 for colorectal cancer screening in family-risk individuals: comparison with faecal immunochemical test. Br J Cancer. 2015; 112(2): 375–381.
  65. Hariharan R, Jenkins M. Utility of the methylated SEPT9 test for the early detection of colorectal cancer: a systematic review and meta-analysis of diagnostic test accuracy. BMJ Open Gastroenterol. 2020; 7(1): e000355.
  66. Epigenomics I. Longitudinal Performance of Epi Procolon (2023). Dostępne na:. https://ClinicalTrials.gov/show/NCT03218423.
  67. Inc FH. Prevention of Colorectal Cancer Through Multiomics Blood Testing (2020). Dostępne na: . https://ClinicalTrials.gov/show/NCT04369053.
  68. Holten-Andersen L, Christensen IbJ, Jensen SB, et al. Saliva and plasma TIMP-1 in patients with colorectal cancer: a prospective study. Scand J Gastroenterol. 2012; 47(10): 1234–1241.
  69. Nielsen HJ, Brünner N, Jorgensen LN, et al. Danish Endoscopy Study Group on Colorectal Cancer Detection, Danish Colorectal Cancer Cooperative Group. Plasma TIMP-1 and CEA in detection of primary colorectal cancer: a prospective, population based study of 4509 high-risk individuals. Scand J Gastroenterol. 2011; 46(1): 60–69.
  70. Wilhelmsen M, Christensen IbJ, Rasmussen L, et al. Detection of colorectal neoplasia: combination of eight blood-based, cancer-associated protein biomarkers. Int J Cancer. 2017; 140(6): 1436–1446.
  71. Peterse EFP, Meester RGS, de Jonge L, et al. Comparing the cost-effectiveness of innovative colorectal cancer screening tests. J Natl Cancer Inst. 2021; 113(2): 154–161.
  72. Siegel RL, Miller K, Sauer AG, et al. Colorectal cancer statistics, 2020. A Cancer J Clin. 2020; 70(3): 145–164.
  73. Hippisley-Cox J, Coupland C. Development and validation of risk prediction algorithms to estimate future risk of common cancers in men and women: prospective cohort study. BMJ Open. 2015; 5(3): e007825.
  74. Usher-Smith JA, Harshfield A, Saunders CL, et al. External validation of risk prediction models for incident colorectal cancer using UK Biobank. Br J Cancer. 2018; 118(5): 750–759.
  75. Helsingen LM, Vandvik P, Jodal H, et al. Colorectal cancer screening with faecal immunochemical testing, sigmoidoscopy or colonoscopy: a clinical practice guideline. BMJ. 2019: l5515.
  76. Law PJ, Timofeeva M, Fernandez-Rozadilla C, et al. PRACTICAL consortium. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun. 2019; 10(1): 2154.
  77. Wen J, Xu Q, Yuan Y. Single nucleotide polymorphisms and sporadic colorectal cancer susceptibility: a field synopsis and meta-analysis. Cancer Cell Int. 2018; 18: 155.
  78. McGeoch L, Saunders CL, Griffin SJ, et al. Risk prediction models for colorectal cancer incorporating common genetic variants: a systematic review. Cancer Epidemiol Biomarkers Prev. 2019; 28(10): 1580–1593.
  79. Thomas C, Mandrik O, Saunders CL, et al. The costs and benefits of risk stratification for colorectal cancer screening based on phenotypic and genetic risk: a health economic analysis. Cancer Prev Res (Phila). 2021; 14(8): 811–822.
  80. Saunders CL, Kilian B, Thompson DJ, et al. External validation of risk prediction models incorporating common genetic variants for incident colorectal cancer using UK biobank. Cancer Prev Res (Phila). 2020; 13(6): 509–520.
  81. Naber SK, Kundu S, Kuntz KM, et al. Cost-Effectiveness of risk-stratified colorectal cancer screening based on polygenic risk: current status and future potential. JNCI Cancer Spectr. 2020; 4(1): pkz086.
  82. Osborne JM, Wilson C, Moore V, et al. Sample preference for colorectal cancer screening tests: Blood or stool? Open J Prev Med. 2012; 02(03): 326–331.
  83. Taber JM, Aspinwall LG, Heichman KA, et al. Preferences for blood-based colon cancer screening differ by race/ethnicity. Am J Health Behav. 2014; 38(3): 351–361.
  84. Ioannou S, Sutherland K, Sussman DA, et al. Increasing uptake of colon cancer screening in a medically underserved population with the addition of blood-based testing. BMC Cancer. 2021; 21(1): 966.
  85. Zajac IT, Duncan A, Turnbull D, et al. Blood-based screening for bowel cancer may not resolve suboptimal screening participation in Australia. Aust N Z J Public Health. 2016; 40(4): 337–341.
  86. Osborne JM, Flight I, Wilson CJ, et al. The impact of sample type and procedural attributes on relative acceptability of different colorectal cancer screening regimens. Patient Prefer Adherence. 2018; 12: 1825–1836.
  87. Doubeni CA, Laiyemo AO, Major JM, et al. Socioeconomic status and the risk of colorectal cancer: an analysis of more than a half million adults in the National Institutes of Health-AARP Diet and Health Study. Cancer. 2012; 118(14): 3636–3644.
  88. Cohen JD, Li Lu, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018; 359(6378): 926–930.
  89. Clark BT, Rustagi T, Laine L. What level of bowel prep quality requires early repeat colonoscopy: systematic review and meta-analysis of the impact of preparation quality on adenoma detection rate. Am J Gastroenterol. 2014; 109(11): 1714–23; quiz 1724.
  90. Kaminski MF, Regula J, Kraszewska E, et al. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010; 362(19): 1795–1803.
  91. Bishay K, Causada-Calo N, Scaffidi MA, et al. Associations between endoscopist feedback and improvements in colonoscopy quality indicators: a systematic review and meta-analysis. Gastrointest Endosc. 2020; 92(5): 1030–1040.e9.



Gastroenterologia Kliniczna. Postępy i Standardy