open access

Vol 4, No 1 (2018)
Prace poglądowe
Published online: 2018-04-05
Get Citation

Budowa i funkcja ludzkich antygenów zgodności tkankowej. Część 1. Kodowanie i budowa

Krzysztof Wiktorowicz, Krzysztof Kaszkowiak
Forum Reumatologiczne 2018;4(1):37-44.

open access

Vol 4, No 1 (2018)
Prace poglądowe
Published online: 2018-04-05

Abstract

Antygeny zgodności tkankowej należą do struktur, zapewniających integralność organizmu. U ludzi tradycyjnie są nazywane antygenami leukocytarnymi (HLA). Kompleks genów kodujących te antygeny, tak zwany główny układ zgodności tkankowej (MHC) leży na chromosomie 6. Ze względu na budowę i funkcje wyróżniane są antygeny zgodności tkankowej klasy I i klasy II. Antygeny klasy I, występujące na wszystkich komórkach jądrzastych, są
białkami transmembranowymi, zbudowanymi z ciężkiego łańcucha polipeptydowego zwiniętego w trzy domeny, do którego niekowalencyjnie dołączona jest beta2 mikroglobulina. Pofałdowanie łańcucha ciężkiego powoduje powstanie rowka mogącego wiązać peptydy. Antygeny klasy II występują konstytutywnie na powierzchni komórek prezentujących antygen. Są heterodimerem zbudowanym z dwóch transmembranowych łańcuchów ciężkich, których ukształtowanie w części dystalnej tworzy rowek wiążący peptydy. Układ MHC cechuje bardzo duży polimorfizm.

Forum Reumatol. 2018, tom 4, nr 1: 37–44

Abstract

Antygeny zgodności tkankowej należą do struktur, zapewniających integralność organizmu. U ludzi tradycyjnie są nazywane antygenami leukocytarnymi (HLA). Kompleks genów kodujących te antygeny, tak zwany główny układ zgodności tkankowej (MHC) leży na chromosomie 6. Ze względu na budowę i funkcje wyróżniane są antygeny zgodności tkankowej klasy I i klasy II. Antygeny klasy I, występujące na wszystkich komórkach jądrzastych, są
białkami transmembranowymi, zbudowanymi z ciężkiego łańcucha polipeptydowego zwiniętego w trzy domeny, do którego niekowalencyjnie dołączona jest beta2 mikroglobulina. Pofałdowanie łańcucha ciężkiego powoduje powstanie rowka mogącego wiązać peptydy. Antygeny klasy II występują konstytutywnie na powierzchni komórek prezentujących antygen. Są heterodimerem zbudowanym z dwóch transmembranowych łańcuchów ciężkich, których ukształtowanie w części dystalnej tworzy rowek wiążący peptydy. Układ MHC cechuje bardzo duży polimorfizm.

Forum Reumatol. 2018, tom 4, nr 1: 37–44

Get Citation

Keywords

ludzkie antygeny leukocytarne (HLA); główny układ zgodności tkankowej (MHC); cząsteczki MHC kl. I i kl. II

About this article
Title

Budowa i funkcja ludzkich antygenów zgodności tkankowej. Część 1. Kodowanie i budowa

Journal

Forum Reumatologiczne

Issue

Vol 4, No 1 (2018)

Pages

37-44

Published online

2018-04-05

Bibliographic record

Forum Reumatologiczne 2018;4(1):37-44.

Keywords

ludzkie antygeny leukocytarne (HLA)
główny układ zgodności tkankowej (MHC)
cząsteczki MHC kl. I i kl. II

Authors

Krzysztof Wiktorowicz
Krzysztof Kaszkowiak

References (45)
  1. SNELL GD. Methods for the study of histocompatibility genes. J Genet. 1948; 49(2): 87–108.
  2. Schreuder G, Hurley CK, Marsh S, et al. The HLA Dictionary 2001: a summary of HLA-A, -B, -C, -DRB1/3/4/5, -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR and -DQ antigens. Tissue Antigens. 2005; 65: 1–55.
  3. Kelly A, Trowsdale J. Introduction: MHC/KIR and governance of specificity. Immunogenetics. 2017; 69(8-9): 481–488.
  4. Traherne JA. Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet. 2008; 35(3): 179–192.
  5. Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004; 5(12): 889–899.
  6. Yung Yu C, Yang Z, Blanchong CA, et al. The human and mouse MHC class III region: a parade of 21 genes at the centromeric segment. Immunol Today. 2000; 21(7): 320–328.
  7. Loughner CL, Bruford EA, McAndrews MS, et al. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics. 2016; 10: 10.
  8. Rakyan VK, Hildmann T, Novik KL, et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2004; 2(12): e405.
  9. Ting JY, Trowsdale J. Genetic Control of MHC Class II Expression. Cell. 2002; 109(2): S21–S33.
  10. Ting JPY, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity. 2008; 28(3): 285–287.
  11. Downs I, Vijayan S, Sidiq T, et al. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression. Biofactors. 2016; 42(4): 349–357.
  12. van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol. 2011; 2: 48.
  13. Downs I, Vijayan S, Sidiq T, et al. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression. Biofactors. 2016; 42(4): 349–357.
  14. Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol. 2005; 5(10): 793–806.
  15. Nowak J. Rola niezgodności HLA w transplantacjach komórek krwiotwórczych. Hematologia. 2010; 1: 49–58.
  16. Nunes E, Heslop H, Fernandez-Vina M, et al. Harmonization of Histocompatibility Typing Terms Working Group. Definitions of histocompatibility typing terms: Harmonization of Histocompatibility Typing Terms Working Group. Hum Immunol. 2011; 72(12): 1214–1216.
  17. Heegaard NHH. beta(2)-microglobulin: from physiology to amyloidosis. Amyloid. 2009; 16(3): 151–173.
  18. Bodmer WF. HLA structure and function: a contemporary view. Tissue Antigens. 1981; 17(1): 9–20.
  19. Natali PG, Bigotti A, Nicotra MR, et al. Distribution of human Class I (HLA-A,B,C) histocompatibility antigens in normal and malignant tissues of nonlymphoid origin. Cancer Res. 1984; 44(10): 4679–4687.
  20. Robinson J, Sieff C, Delia D, et al. Expression of cell-surface HLA-DR, HLA-ABC and glycophorin during erythroid differentiation. Nature. 1981; 289(5793): 68–71.
  21. Giles CM. Human leukocyte antigens (HLA) class I (Bg) on red cells studied with monoclonal antibodies. Immunohematology. 1990; 6(3): 53–8.
  22. Apps R, Meng Z, Del Prete GQ, et al. Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. J Immunol. 2015; 194(8): 3594–3600.
  23. Rammensee HG, Singh-Jasuja H. HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev Vaccines. 2013; 12(10): 1211–1217.
  24. Garrido F, Ruiz-Cabello F, Aptsiauri N. Rejection versus escape: the tumor MHC dilemma. Cancer Immunol Immunother. 2017; 66(2): 259–271.
  25. Robinson J, Halliwell JA, Hayhurst JD, et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015; 43(Database issue): D423–D431.
  26. Torikai H, Reik A, Soldner F, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood. 2013; 122(8): 1341–1349.
  27. Sullivan LC, Clements CS, Rossjohn J, et al. The major histocompatibility complex class Ib molecule HLA-E at the interface between innate and adaptive immunity. Tissue Antigens. 2008; 72(5): 415–424.
  28. Wainwright SD, Biro PA, Holmes CH. HLA-F is a predominantly empty, intracellular, TAP-associated MHC class Ib protein with a restricted expression pattern. J Immunol. 2000; 164(1): 319–328.
  29. Lepin EJ, Bastin JM, Allan DS, et al. Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors. Eur J Immunol. 2000; 30(12): 3552–3561.
  30. Lee Ni, Ishitani A, Geraghty DE. HLA-F is a surface marker on activated lymphocytes. Eur J Immunol. 2010; 40(8): 2308–2318.
  31. Amiot L, Vu N, Samson M. Biology of the immunomodulatory molecule HLA-G in human liver diseases. J Hepatol. 2015; 62(6): 1430–1437.
  32. Baranwal AK, Mehra NK. Major Histocompatibility Complex Class I Chain-Related A (MICA) Molecules: Relevance in Solid Organ Transplantation. Front Immunol. 2017; 8: 182.
  33. Chen D, Gyllensten U. MICA polymorphism: biology and importance in cancer. Carcinogenesis. 2014; 35(12): 2633–2642.
  34. Ly D, Moody DB. The CD1 size problem: lipid antigens, ligands, and scaffolds. Cell Mol Life Sci. 2014; 71(16): 3069–3079.
  35. Van Rhijn I, Godfrey DI, Rossjohn J, et al. Lipid and small-molecule display by CD1 and MR1. Nat Rev Immunol. 2015; 15(10): 643–654.
  36. Bjorkman P. Not Second Class: The First Class II MHC Crystal Structure. The Journal of Immunology. 2014; 194(1): 3–4.
  37. Painter CA, Stern LJ. Conformational variation in structures of classical and non-classical MHCII proteins and functional implications. Immunol Rev. 2012; 250(1): 144–157.
  38. Temme S, Zacharias M, Neumann J, et al. A novel family of human leukocyte antigen class II receptors may have its origin in archaic human species. J Biol Chem. 2014; 289(2): 639–653.
  39. Handunnetthi L, Ramagopalan SV, Ebers GC, et al. Regulation of major histocompatibility complex class II gene expression, genetic variation and disease. Genes Immun. 2010; 11(2): 99–112.
  40. Edwards JA, Durant BM, Jones DB, et al. Differential expression of HLA class II antigens in fetal human spleen: relationship of HLA-DP, DQ, and DR to immunoglobulin expression. J Immunol. 1986; 137(2): 490–497.
  41. Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol. 2014; 26: 115–122.
  42. Chen X, Jensen PE. Biological function of HLA-DO (H2-O). Crit. Rev. Immunol. 2014; 34(3): 215–225.
  43. Kremer AN, van der Meijden ED, Honders MW, et al. Human leukocyte antigen-DO regulates surface presentation of human leukocyte antigen class II-restricted antigens on B cell malignancies. Biol Blood Marrow Transplant. 2014; 20(5): 742–747.
  44. Klein J, Sato A, Nikolaidis N. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet. 2007; 41: 281–304.
  45. Ségurel L, Quintana-Murci L. Preserving immune diversity through ancient inheritance and admixture. Curr Opin Immunol. 2014; 30: 79–84.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl