Inhibitory SGLT-2 — leki hipoglikemizujące, kardioprotekcyjne i nefroprotekcyjne
Streszczenie
Cukrzyca jest istotnym czynnikiem ryzyka rozwoju niewydolności serca i najczęstszą przyczyną
schyłkowej niewydolności nerek. Inhibitory ko-transportera sodowo-glukozowego-2 (SGLT-2)
są nowymi lekami przeciwcukrzycowymi, których oddziaływanie wykracza daleko poza
prostą kontrolę glikemii. Inhibitory SGLT-2 zapobiegają pogarszaniu się niewydolności
serca zarówno u pacjentów z, jak i bez cukrzycy. Leki zmniejszają także ryzyko poważnych
zdarzeń sercowo-naczyniowych i zgonów z powodu chorób układu krążen ia, u pacjentów
z wysokim ryzykiem sercowo-naczyniowym. Korzystne efekty wydają się związane
z lepszą kontrolą glikemii, zwiększoną diurezą i natriurezą oraz zmniejszeniem objętości
płynu pozakomórkowego. Bezpośrednie oddziaływanie na mięsień sercowy jest wynikiem
znacznej redukcji poziomu sodu i wapnia w kardiomiocytach, hamowania włóknienia oraz
nasilenia erytropoezy i ketogenezy. Inhibitory SGLT-2 redukują albuminurię, spowalniają
włóknienie nerek i zachowują ich wydolność. Zastosowanie leków powinno być brane
pod uwagę u wszystkich pacjentów z cukrzycową chorobą nerek, niezależnie od stopnia
kontroli glikemii.
Inhibitory SGLT-2 są rekomendowane jako leki pierwszego rzutu w długotrwałej terapii
chorych na cukrzycę typu 2 z niewydolnością serca, z wysokim ryzykiem miażdżycy i jej
powikłań oraz z cukrzycową chorobą nerek.
Słowa kluczowe: cukrzycainhibitory SGLT-2niewydolność sercacukrzycowa choroba nerek
Referencje
- Gregg EW, Hora I, Benoit SR. Resurgence in Diabetes-Related Complications. JAMA. 2019; 321(19): 1867–1868.
- Giugliano D, Longo M, Scappaticcio L, et al. Sodium-glucose transporter-2 inhibitors for prevention and treatment of cardiorenal complications of type 2 diabetes. Cardiovasc Diabetol. 2021; 20(1).
- Tentolouris A, Vlachakis P, Tzeravini E, et al. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int J Environ Res Public Health. 2019; 16(16).
- Vrhovac I, Balen Eror D, Klessen D, et al. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 2015; 467(9): 1881–1898.
- Salvatore T, Galiero R, Caturano A, et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int J Mol Sci. 2022; 23(7).
- Ray EC. Evolving understanding of cardiovascular protection by SGLT2 inhibitors: focus on renal protection, myocardial effects, uric acid, and magnesium balance. Curr Opin Pharmacol. 2020; 54: 11–17.
- Hu S, Lin C, Cai X, et al. The urinary glucose excretion by sodium-glucose cotransporter 2 inhibitor in patients with different levels of renal function: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021; 12: 814074.
- Dominguez Rieg JA, Xue J, Rieg T. Tubular effects of sodium-glucose cotransporter 2 inhibitors: intended and unintended consequences. Curr Opin Nephrol Hypertens. 2020; 29(5): 523–530.
- Natali A, Nesti L, Tricò D, et al. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol. 2021; 20(1): 196.
- Chowdhury TA, Ali O. Diabetes and the kidney. Clin Med. 2021; 21(4): e318–e322.
- Thomson SC, Vallon V. Renal effects of sodium-glucose cotransporter inhibitors. Am J Cardiol . 2019; 124(Suppl. 1): S28–S35.
- Jhund PS, Solomon SD, Docherty KF, et al. Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction. Circulation. 2021; 143(4): 298–309.
- Garofalo C, Borrelli S, Liberti M, et al. SGLT2 Inhibitors: Nephroprotective Efficacy and Side Effects. Medicina. 2019; 55(6): 268.
- Giugliano D, Longo M, Scappaticcio L, et al. SGLT-2 inhibitors and cardiorenal outcomes in patients with or without type 2 diabetes: a meta-analysis of 11 CVOTs. Cardiovasc Diabetol. 2021; 20(1): 236.
- Palmiero G, Cesaro A, Vetrano E, et al. Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int J Mol Sci. 2021; 22(11).
- Patel VB, Shah S, Verma S, et al. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017; 22(6): 889–902.
- Liu Z, Ma X, Ilyas I, et al. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics. 2021; 11(9): 4502–4515.
- McMurray J, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381: 1995–2008.
- Jhund PS, Ponikowski P, Docherty KF, et al. Dapagliflozin and recurrent heart failure hospitalizations in heart failure with reduced ejection fraction. Circulation. 2021; 143(20): 1962–1972.
- Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383: 1413–1424.
- Packer M, Anker SD, Butler J, et al. Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation. 2021; 143(4): 326–336.
- Packer M, Butler J, Zannad F, et al. Effect of empagliflozin on worsening heart failure and preserved ejection fraction. Circulation. 2021; 144(16): 1284–1294.
- Figtree GA, Rådholm K, Barrett TD, et al. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus: Results From the CANVAS Program. Circulation. 2018; 138(5): 458–468.
- Cosentino F, Cannon CP, Cherney DZI, et al. VERTIS CV Investigators. Efficacy of ertugliflozin on heart failure–related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease. Circulation. 2020; 142(23): 2205–2215.
- Yin D, Qiu M, Wei X, et al. Meta-analyzing the factors affecting the efficacy of gliflozins in patients with heart failure based on heart failure trials. Medicine (Baltimore). 2021; 100(28): e26561.
- Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393(10166): 31–39.
- Ueda P, Svanström H, Melbye M, et al. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. BMJ. 2018; 363: k4365.
- Sano M, Goto S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation. 2019; 139(17): 1985–1987.
- Zhao Y, Xu L, Tian D. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018; 20: 458–462.
- Storgaard H, Gluud LL, Bennett C, et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2016; 11(11): e0166125.
- Huang C, Lee J. Sodium‐glucose co‐transporter‐2 inhibitors and major adverse limb events: A trial‐level meta‐analysis including 51 713 individuals. Diabetes, Obesity and Metabolism. 2020; 22(12): 2348–2355.
- Vinke JS, Heerspink HJL, de Borst MH. Effects of sodium glucose cotransporter 2 inhibitors on mineral metabolism in type 2 diabetes mellitus. Curr Opin Nephrol Hypertens. 2019; 28(4): 321–327.
- Blau JE, Taylor SI, Taylor SI, et al. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 2015; 3(1): 8–10.
- Fralick M, Kim SC, Schneeweiss S, et al. Fracture risk after initiating canagliflozin: a multi-database cohort study. Ann Intern Med. 2019; 170(3): 155–163.
- Zhuo M, Hawley CE, Paik JM, et al. Association of sodium-glucose cotransporter–2 inhibitors with fracture risk in older adults with type 2 diabetes. JAMA Netw Open. 2021; 4(10): e2130762.
- Li Cx, Liang S, Gao L, et al. Cardiovascular outcomes associated with SGLT-2 inhibitors versus other glucose-lowering drugs in patients with type 2 diabetes: A real-world systematic review and meta-analysis. PLOS ONE. 2021; 16(2): e0244689.