Tom 16, Nr 6 (2022)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2022-12-30
Wyświetlenia strony 675
Wyświetlenia/pobrania artykułu 36
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Funkcja tarczycy i nadnerczy w COVID-19 — perspektywa kliniczna

Agata Berlińska1, Renata Świątkowska-Stodulska1
Forum Medycyny Rodzinnej 2022;16(6):257-270.

Streszczenie

Ogólnoświatowa pandemia COVID-19 zmieniła sposób funkcjonowania opieki medycznej

zarówno na poziomie podstawowym, jak i medycyny szpitalnej czy wysokospecjalistycznej.

COVID-19 szybko okazał się przyczyną nie tylko wirusowego zapalenia płuc, ale także

licznych komplikacji dotykających różnych narządów. Układ endokrynny, a w szczególności

tarczyca i nadnercza, przechodzi istotne adaptacje w przebiegu COVID-19. Na

podstawie dotychczasowych obserwacji stwierdzono, że wykładniki funkcji hormonalnej

mogą pełnić szczególną rolę kliniczną i predykcyjną w COVID-19. W niniejszym artykule

przedstawiono wybrane aspekty dotyczące układu hormonalnego i COV ID-19, a także

zaprezentowano schematy procedur diagnostyczno-leczniczych doty czących patologii

tarczycy i nadnerczy.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020; 91(1): 157–160.
  2. Jordan RE, Adab P, Cheng KK. Covid-19: risk factors for severe disease and death. BMJ. 2020; 368: m1198.
  3. Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy. 2021; 76(2): 428–455.
  4. Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(24): 759–765.
  5. Wang D, Hu Bo, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–1069.
  6. Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631–637.
  7. Li MY, Li L, Zhang Y, et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020; 9(1): 45.
  8. Park GC, Lee HW, Kim JM, et al. ACE2 and TMPRSS2 Immunolocalization and COVID-19-Related Thyroid Disorder. Biology (Basel). 2022; 11(5).
  9. Mao Y, Xu Bo, Guan W, et al. The Adrenal Cortex, an Underestimated Site of SARS-CoV-2 Infection. Front Endocrinol (Lausanne). 2020; 11: 593179.
  10. Kanczkowski W, Evert K, Stadtmüller M, et al. COVID-19 targets human adrenal glands. The Lancet Diabetes & Endocrinology. 2022; 10(1): 13–16.
  11. Jakovac H, Ferenčić A, Stemberger C, et al. Detection of Sars-Cov-2 antigens in thyroid gland showing histopathological features of subacute thyroiditis. Eur Thyroid J. 2022; 11(2).
  12. Macedo S, Pestana A, Santos L, et al. Detection of SARS-CoV-2 infection in thyroid follicular cells from a COVID-19 autopsy series. Eur Thyroid J. 2022; 11(4).
  13. Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014; 24(10): 1456–1465.
  14. Campi I, Bulgarelli I, Dubini A, et al. The spectrum of thyroid function tests during hospitalization for SARS COV-2 infection. Eur J Endocrinol. 2021; 184(5): 699–709.
  15. Sam S, Corbridge TC, Mokhlesi B, et al. Cortisol levels and mortality in severe sepsis. Clin Endocrinol (Oxf). 2004; 60(1): 29–35.
  16. Tan T, Khoo B, Mills E, et al. Association between high serum total cortisol concentrations and mortality from COVID-19. The Lancet Diabetes & Endocrinology. 2020; 8(8): 659–660.
  17. Vakhshoori M, Heidarpour M, Bondariyan N, et al. Adrenal Insufficiency in Coronavirus Disease 2019 (COVID-19)-Infected Patients without Preexisting Adrenal Diseases: A Systematic Literature Review. Int J Endocrinol. 2021; 2021: 2271514.
  18. Lee WK, Hwang S, Kim D, et al. Distinct Features of Nonthyroidal Illness in Critically Ill Patients With Infectious Diseases. Medicine (Baltimore). 2016; 95(14): e3346.
  19. Lee S, Farwell AP. Euthyroid Sick Syndrome. Compr Physiol. 2016; 6(2): 1071–1080.
  20. Halsall DJ, Oddy S. Clinical and laboratory aspects of 3,3',5'-triiodothyronine (reverse T3). Ann Clin Biochem. 2021; 58(1): 29–37.
  21. Giovanella L, Ruggeri RM, Ovčariček PP, et al. Prevalence of thyroid dysfunction in patients with COVID-19: a systematic review. Clin Transl Imaging. 2021; 9(3): 233–240.
  22. Zhang Y, Lin F, Tu W, et al. medical team from Xiangya Hospital to support Hubei, China. Thyroid dysfunction may be associated with poor outcomes in patients with COVID-19. Mol Cell Endocrinol. 2021; 521: 111097.
  23. Chen M, Zhou W, Xu W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid. 2021; 31(1): 8–11.
  24. Beltrão FE, Beltrão DC, Carvalhal G, et al. Thyroid Hormone Levels During Hospital Admission Inform Disease Severity and Mortality in COVID-19 Patients. Thyroid. 2021; 31(11): 1639–1649.
  25. Świątkowska-Stodulska R, Berlińska A, Puchalska-Reglińska E. Thyroid Function, Inflammatory Response, and Glucocorticoids in COVID-19. Front Endocrinol (Lausanne). 2022; 13: 939842.
  26. Wang W, Su X, Ding Y, et al. Thyroid Function Abnormalities in COVID-19 Patients. Front Endocrinol (Lausanne). 2020; 11: 623792.
  27. Trimboli P, Cappelli C, Croce L, et al. COVID-19-Associated Subacute Thyroiditis: Evidence-Based Data From a Systematic Review. Front Endocrinol (Lausanne). 2021; 12: 707726.
  28. Christensen J, O’Callaghan K, Sinclair H, et al. Risk factors, treatment and outcomes of subacute thyroiditis secondary to COVID-19: a systematic review. Intern Med J. 2022; 52(4): 522–529.
  29. Stasiak M, Lewiński A. New aspects in the pathogenesis and management of subacute thyroiditis. Rev Endocr Metab Disord. 2021; 22(4): 1027–1039.
  30. Stasiak M, Tymoniuk B, Michalak R, et al. Subacute Thyroiditis is Associated with , - and --The Significance of the New Molecular Background. J Clin Med. 2020; 9(2).
  31. Ippolito S, Gallo D, Rossini A, et al. SARS-CoV-2 vaccine-associated subacute thyroiditis: insights from a systematic review. J Endocrinol Invest. 2022; 45(6): 1189–1200.
  32. Naguib R. Potential relationships between COVID-19 and the thyroid gland: an update. J Int Med Res. 2022; 50(2): 3000605221082898.
  33. Table of Contents | COVID-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/about-the-guidelines/table-of-contents/ (24.06.2022).
  34. Horby P, Lim WS, Emberson JR, et al. RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021; 384(8): 693–704.
  35. Berlińska A, Świątkowska-Stodulska R, Sworczak K. Old Problem, New Concerns: Hypercortisolemia in the Time of COVID-19. Front Endocrinol (Lausanne). 2021; 12: 711612.
  36. Berlińska A, Świątkowska-Stodulska R, Sworczak K. Factors Affecting Dexamethasone Suppression Test Results. Exp Clin Endocrinol Diabetes. 2019; 128(10): 667–671.
  37. Boonen E, Bornstein SR, Van den Berghe G. New insights into the controversy of adrenal function during critical illness. Lancet Diabetes Endocrinol. 2015; 3(10): 805–815.
  38. Boonen E, Vervenne H, Meersseman P, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013; 368(16): 1477–1488.
  39. Yavropoulou MP, Filippa MG, Mantzou A, et al. Alterations in cortisol and interleukin-6 secretion in patients with COVID-19 suggestive of neuroendocrine-immune adaptations. Endocrine. 2022; 75(2): 317–327.
  40. Amiri-Dashatan N, Koushki M, Parsamanesh N, et al. Serum cortisol concentration and COVID-19 severity: a systematic review and meta-analysis. J Investig Med. 2022; 70(3): 766–772.
  41. Świątkowska-Stodulska R, Berlińska A, Puchalska-Reglińska E. Cortisol as an Independent Predictor of Unfavorable Outcomes in Hospitalized COVID-19 Patients. Biomedicines. 2022; 10(7).
  42. Tan T, Khoo B, Mills E, et al. Association between high serum total cortisol concentrations and mortality from COVID-19. The Lancet Diabetes & Endocrinology. 2020; 8(8): 659–660.
  43. Ramezani M, Simani L, Karimialavijeh E, et al. The Role of Anxiety and Cortisol in Outcomes of Patients With Covid-19. Basic Clin Neurosci. 2020; 11(2): 179–184.
  44. Świątkowska-Stodulska R, Berlińska A, Stefańska K, et al. Cyclic Cushing's Syndrome - A Diagnostic Challenge. Front Endocrinol (Lausanne). 2021; 12: 658429.
  45. Arnaldi G, Cardinaletti M, Boscaro M. Advances in medical treatment of Cushing's disease. Expert Rev Endocrinol Metab. 2007; 2(6): 735–743.
  46. Nieman L, Biller B, Findling J, et al. The diagnosis of Cushing's syndrome: an endocrine society clinical practice guideline. European Journal of Endocrinology. 2009.
  47. Hashim M, Athar S, Gaba WH. New onset adrenal insufficiency in a patient with COVID-19. BMJ Case Rep. 2021; 14(1).
  48. Sánchez J, Cohen M, Zapater JL, et al. Primary Adrenal Insufficiency After COVID-19 Infection. AACE Clin Case Rep. 2022; 8(2): 51–53.
  49. Alzahrani AS, Mukhtar N, Aljomaiah A, et al. The Impact of COVID-19 Viral Infection on the Hypothalamic-Pituitary-Adrenal Axis. Endocr Pract. 2021; 27(2): 83–89.
  50. Annane D, Pastores SM, Arlt W, et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Intensive Care Med. 2017; 43(12): 1781–1792.
  51. Supuran CT, Capasso C, Jensterle M, et al. The Relationship between COVID-19 and Hypothalamic-Pituitary-Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess — The CAPISCO International Expert Panel. Int J Mol Sci. 2022; 23(13).
  52. Elkhouly MMN, Elazzab AA, Moghul SS. Bilateral adrenal hemorrhage in a man with severe COVID-19 pneumonia. Radiol Case Rep. 2021; 16(6): 1438–1442.
  53. Frankel M, Feldman I, Levine M, et al. Bilateral Adrenal Hemorrhage in Coronavirus Disease 2019 Patient: A Case Report. J Clin Endocrinol Metab. 2020; 105(12).
  54. Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016; 101(2): 364–389.
  55. Dineen R, Thompson CJ, Sherlock M. Adrenal crisis: prevention and management in adult patients. Ther Adv Endocrinol Metab. 2019; 10: 2042018819848218.