Funkcja tarczycy i nadnerczy w COVID-19 — perspektywa kliniczna
Streszczenie
Ogólnoświatowa pandemia COVID-19 zmieniła sposób funkcjonowania opieki medycznej
zarówno na poziomie podstawowym, jak i medycyny szpitalnej czy wysokospecjalistycznej.
COVID-19 szybko okazał się przyczyną nie tylko wirusowego zapalenia płuc, ale także
licznych komplikacji dotykających różnych narządów. Układ endokrynny, a w szczególności
tarczyca i nadnercza, przechodzi istotne adaptacje w przebiegu COVID-19. Na
podstawie dotychczasowych obserwacji stwierdzono, że wykładniki funkcji hormonalnej
mogą pełnić szczególną rolę kliniczną i predykcyjną w COVID-19. W niniejszym artykule
przedstawiono wybrane aspekty dotyczące układu hormonalnego i COV ID-19, a także
zaprezentowano schematy procedur diagnostyczno-leczniczych doty czących patologii
tarczycy i nadnerczy.
Słowa kluczowe: COVID-19SARS-CoV-2TSHfT3wolna trijodotyroninakortyzolSATpodostre zapalenie tarczycytarczycanadnercza
Referencje
- Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020; 91(1): 157–160.
- Jordan RE, Adab P, Cheng KK. Covid-19: risk factors for severe disease and death. BMJ. 2020; 368: m1198.
- Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy. 2021; 76(2): 428–455.
- Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(24): 759–765.
- Wang D, Hu Bo, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–1069.
- Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631–637.
- Li MY, Li L, Zhang Y, et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020; 9(1): 45.
- Park GC, Lee HW, Kim JM, et al. ACE2 and TMPRSS2 Immunolocalization and COVID-19-Related Thyroid Disorder. Biology (Basel). 2022; 11(5).
- Mao Y, Xu Bo, Guan W, et al. The Adrenal Cortex, an Underestimated Site of SARS-CoV-2 Infection. Front Endocrinol (Lausanne). 2020; 11: 593179.
- Kanczkowski W, Evert K, Stadtmüller M, et al. COVID-19 targets human adrenal glands. The Lancet Diabetes & Endocrinology. 2022; 10(1): 13–16.
- Jakovac H, Ferenčić A, Stemberger C, et al. Detection of Sars-Cov-2 antigens in thyroid gland showing histopathological features of subacute thyroiditis. Eur Thyroid J. 2022; 11(2).
- Macedo S, Pestana A, Santos L, et al. Detection of SARS-CoV-2 infection in thyroid follicular cells from a COVID-19 autopsy series. Eur Thyroid J. 2022; 11(4).
- Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014; 24(10): 1456–1465.
- Campi I, Bulgarelli I, Dubini A, et al. The spectrum of thyroid function tests during hospitalization for SARS COV-2 infection. Eur J Endocrinol. 2021; 184(5): 699–709.
- Sam S, Corbridge TC, Mokhlesi B, et al. Cortisol levels and mortality in severe sepsis. Clin Endocrinol (Oxf). 2004; 60(1): 29–35.
- Tan T, Khoo B, Mills E, et al. Association between high serum total cortisol concentrations and mortality from COVID-19. The Lancet Diabetes & Endocrinology. 2020; 8(8): 659–660.
- Vakhshoori M, Heidarpour M, Bondariyan N, et al. Adrenal Insufficiency in Coronavirus Disease 2019 (COVID-19)-Infected Patients without Preexisting Adrenal Diseases: A Systematic Literature Review. Int J Endocrinol. 2021; 2021: 2271514.
- Lee WK, Hwang S, Kim D, et al. Distinct Features of Nonthyroidal Illness in Critically Ill Patients With Infectious Diseases. Medicine (Baltimore). 2016; 95(14): e3346.
- Lee S, Farwell AP. Euthyroid Sick Syndrome. Compr Physiol. 2016; 6(2): 1071–1080.
- Halsall DJ, Oddy S. Clinical and laboratory aspects of 3,3',5'-triiodothyronine (reverse T3). Ann Clin Biochem. 2021; 58(1): 29–37.
- Giovanella L, Ruggeri RM, Ovčariček PP, et al. Prevalence of thyroid dysfunction in patients with COVID-19: a systematic review. Clin Transl Imaging. 2021; 9(3): 233–240.
- Zhang Y, Lin F, Tu W, et al. medical team from Xiangya Hospital to support Hubei, China. Thyroid dysfunction may be associated with poor outcomes in patients with COVID-19. Mol Cell Endocrinol. 2021; 521: 111097.
- Chen M, Zhou W, Xu W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid. 2021; 31(1): 8–11.
- Beltrão FE, Beltrão DC, Carvalhal G, et al. Thyroid Hormone Levels During Hospital Admission Inform Disease Severity and Mortality in COVID-19 Patients. Thyroid. 2021; 31(11): 1639–1649.
- Świątkowska-Stodulska R, Berlińska A, Puchalska-Reglińska E. Thyroid Function, Inflammatory Response, and Glucocorticoids in COVID-19. Front Endocrinol (Lausanne). 2022; 13: 939842.
- Wang W, Su X, Ding Y, et al. Thyroid Function Abnormalities in COVID-19 Patients. Front Endocrinol (Lausanne). 2020; 11: 623792.
- Trimboli P, Cappelli C, Croce L, et al. COVID-19-Associated Subacute Thyroiditis: Evidence-Based Data From a Systematic Review. Front Endocrinol (Lausanne). 2021; 12: 707726.
- Christensen J, O’Callaghan K, Sinclair H, et al. Risk factors, treatment and outcomes of subacute thyroiditis secondary to COVID-19: a systematic review. Intern Med J. 2022; 52(4): 522–529.
- Stasiak M, Lewiński A. New aspects in the pathogenesis and management of subacute thyroiditis. Rev Endocr Metab Disord. 2021; 22(4): 1027–1039.
- Stasiak M, Tymoniuk B, Michalak R, et al. Subacute Thyroiditis is Associated with , - and --The Significance of the New Molecular Background. J Clin Med. 2020; 9(2).
- Ippolito S, Gallo D, Rossini A, et al. SARS-CoV-2 vaccine-associated subacute thyroiditis: insights from a systematic review. J Endocrinol Invest. 2022; 45(6): 1189–1200.
- Naguib R. Potential relationships between COVID-19 and the thyroid gland: an update. J Int Med Res. 2022; 50(2): 3000605221082898.
- Table of Contents | COVID-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/about-the-guidelines/table-of-contents/ (24.06.2022).
- Horby P, Lim WS, Emberson JR, et al. RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021; 384(8): 693–704.
- Berlińska A, Świątkowska-Stodulska R, Sworczak K. Old Problem, New Concerns: Hypercortisolemia in the Time of COVID-19. Front Endocrinol (Lausanne). 2021; 12: 711612.
- Berlińska A, Świątkowska-Stodulska R, Sworczak K. Factors Affecting Dexamethasone Suppression Test Results. Exp Clin Endocrinol Diabetes. 2019; 128(10): 667–671.
- Boonen E, Bornstein SR, Van den Berghe G. New insights into the controversy of adrenal function during critical illness. Lancet Diabetes Endocrinol. 2015; 3(10): 805–815.
- Boonen E, Vervenne H, Meersseman P, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013; 368(16): 1477–1488.
- Yavropoulou MP, Filippa MG, Mantzou A, et al. Alterations in cortisol and interleukin-6 secretion in patients with COVID-19 suggestive of neuroendocrine-immune adaptations. Endocrine. 2022; 75(2): 317–327.
- Amiri-Dashatan N, Koushki M, Parsamanesh N, et al. Serum cortisol concentration and COVID-19 severity: a systematic review and meta-analysis. J Investig Med. 2022; 70(3): 766–772.
- Świątkowska-Stodulska R, Berlińska A, Puchalska-Reglińska E. Cortisol as an Independent Predictor of Unfavorable Outcomes in Hospitalized COVID-19 Patients. Biomedicines. 2022; 10(7).
- Tan T, Khoo B, Mills E, et al. Association between high serum total cortisol concentrations and mortality from COVID-19. The Lancet Diabetes & Endocrinology. 2020; 8(8): 659–660.
- Ramezani M, Simani L, Karimialavijeh E, et al. The Role of Anxiety and Cortisol in Outcomes of Patients With Covid-19. Basic Clin Neurosci. 2020; 11(2): 179–184.
- Świątkowska-Stodulska R, Berlińska A, Stefańska K, et al. Cyclic Cushing's Syndrome - A Diagnostic Challenge. Front Endocrinol (Lausanne). 2021; 12: 658429.
- Arnaldi G, Cardinaletti M, Boscaro M. Advances in medical treatment of Cushing's disease. Expert Rev Endocrinol Metab. 2007; 2(6): 735–743.
- Nieman L, Biller B, Findling J, et al. The diagnosis of Cushing's syndrome: an endocrine society clinical practice guideline. European Journal of Endocrinology. 2009.
- Hashim M, Athar S, Gaba WH. New onset adrenal insufficiency in a patient with COVID-19. BMJ Case Rep. 2021; 14(1).
- Sánchez J, Cohen M, Zapater JL, et al. Primary Adrenal Insufficiency After COVID-19 Infection. AACE Clin Case Rep. 2022; 8(2): 51–53.
- Alzahrani AS, Mukhtar N, Aljomaiah A, et al. The Impact of COVID-19 Viral Infection on the Hypothalamic-Pituitary-Adrenal Axis. Endocr Pract. 2021; 27(2): 83–89.
- Annane D, Pastores SM, Arlt W, et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Intensive Care Med. 2017; 43(12): 1781–1792.
- Supuran CT, Capasso C, Jensterle M, et al. The Relationship between COVID-19 and Hypothalamic-Pituitary-Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess — The CAPISCO International Expert Panel. Int J Mol Sci. 2022; 23(13).
- Elkhouly MMN, Elazzab AA, Moghul SS. Bilateral adrenal hemorrhage in a man with severe COVID-19 pneumonia. Radiol Case Rep. 2021; 16(6): 1438–1442.
- Frankel M, Feldman I, Levine M, et al. Bilateral Adrenal Hemorrhage in Coronavirus Disease 2019 Patient: A Case Report. J Clin Endocrinol Metab. 2020; 105(12).
- Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016; 101(2): 364–389.
- Dineen R, Thompson CJ, Sherlock M. Adrenal crisis: prevention and management in adult patients. Ther Adv Endocrinol Metab. 2019; 10: 2042018819848218.