Tom 15, Nr 1 (2021)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2021-02-15

dostęp otwarty

Wyświetlenia strony 942
Wyświetlenia/pobrania artykułu 220
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Probiotykoterapia w zespole metabolicznym

Małgorzata Moszak1, Paweł Bogdański1
Forum Medycyny Rodzinnej 2021;15(1):14-33.

Streszczenie

Mikrobiota jelitowa (GM) pełni w organizmie liczne funkcje warunkujące homeostazę metaboliczną — między innymi uczestniczy w syntezie witamin K, B1 , B6, B12 oraz kwasu foliowego, trawieniu i wchłanianiu składników odżywczych, przemianach cholesterolu i kwasów żółciowych oraz stymulacji układu odpornościowego. Ostatnie dwudziestolecie jest okresem intensywnych badań nad florą bakteryjną oraz zależnościami między jej ilościowymi i jakościowymi zabur zeniami a chorobami metabolicznymi, takimi jak otyłość, cukr zyca typu 2, osteoporoza, hipercholesterolemia oraz stłuszczenie wątroby. Wśród mechanizmów łączących zaburzenia składu i aktywności GM z rozwojem chorób metabolicznych wymienia deregulację przemian energetycznych, utratę integralności błony śluzowej jelit prowadzącą do endotoksemii i stanu zapalnego, zmianę metabolizmu kwasów żółciowych i sygnalizacji receptora farnezoidowego X oraz wpływ metabolitów bakteryjnych (SCFA, TMAO, LPS) na regulacjękluczowych szlaków metabolicznych. Pozytywny wpływ probiotyków na przebieg leczenia otyłości i zabur zeń metabolicznych związanych z nadmierną masą ciała wynika z ich zdolności kształtowania ekosystemu bakterii jelitowych. Zaprezentowane w opracowaniu dane pochodzące z licznych metaanaliz oraz badań klinicznych dostarczają dowodów na istotny potencjał probiotyków w poprawie wykładników gospoda rki węglowodanowej, lipidowej oraz ciśnienia tętniczego, a także prawdopodobny wpływ na redukcję masy ciała i zmianę jego składu. Naukowcy podkreślają jednak, że racjonalizacja użycia drobnoustrojów probiotycznych w leczeniu zespołu metabolicznego wymaga zastosowania probiotykoterapii o przemyślanej specyfice szczepów bakterii lub/i ich połączeń, dawce, czasie trwania i formie. Określenie tych elementów wydaje się kluczowym zadaniem przyszłych badań.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Day C. Metabolic syndrome, or What you will: definitions and epidemiology. Diab Vasc Dis Res. 2007; 4(1): 32–38.
  2. Alberti KG, Eckel RH, Grundy SM, et al. International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120(16): 1640–1645.
  3. Manrique P, Bolduc B, Walk ST, et al. Healthy human gut phageome. Proc Natl Acad Sci U S A. 2016; 113(37): 10400–10405.
  4. Rinninella E, Raoul P, Cintoni M, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019; 7(1).
  5. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007; 449(7164): 804–810.
  6. Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014; 146(6): 1449–1458.
  7. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019; 7(1): 91.
  8. Dieterich W, Schink M, Zopf Y. Microbiota in the Gastrointestinal Tract. Med Sci (Basel). 2018; 6(4).
  9. Sommer F, Bäckhed F. The gut microbiota--masters of host development and physiology. Nat Rev Microbiol. 2013; 11(4): 227–238.
  10. Baumann-Dudenhoeffer AM, D'Souza AW, Tarr PI, et al. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med. 2018; 24(12): 1822–1829.
  11. Isolauri E, Rautava S, Salminen S, et al. Early-Life Nutrition and Microbiome Development. Nestle Nutr Inst Workshop Ser. 2019; 90: 151–162.
  12. Cong X, Judge M, Xu W, et al. Influence of Feeding Type on Gut Microbiome Development in Hospitalized Preterm Infants. Nurs Res. 2017; 66(2): 123–133.
  13. Castaner O, Goday A, Park YM, et al. The Gut Microbiome Profile in Obesity: A Systematic Review. Int J Endocrinol. 2018; 2018: 4095789.
  14. Moszak M, Szulińska M, Bogdański P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Nutrients. 2020; 12(4).
  15. Yan J, Liu L, Zhu Y, et al. The association between breastfeeding and childhood obesity: a meta-analysis. BMC Public Health. 2014; 14: 1267.
  16. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019; 4(4): 623–632.
  17. Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease. Physiol Rev. 2010; 90(3): 859–904.
  18. Dominguez-Bello MG, Blaser MJ, Ley RE, et al. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology. 2011; 140(6): 1713–1719.
  19. Nawrocka M, Szulińska M, Bogdański P. Rola mikroflory jelitowej w patogenezie i leczeniu otyłości oraz zespołu metabolicznego. Forum Zaburzeń Metab. 2015; 6(3): 95–102.
  20. Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (8.11.2020).
  21. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122): 1027–1031.
  22. Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007; 104(3): 979–984.
  23. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006; 124(4): 837–848.
  24. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013; 498(7452): 99–103.
  25. Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010; 5(2): e9085.
  26. A metagenome-wide association study of gut microbiota in type 2 diabetes. - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/23023125?dopt=Abstract (28.01.2020).
  27. Wang X, Xu X, Xia Y. Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus. Antonie Van Leeuwenhoek. 2017; 110(3): 445–453.
  28. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014; 63(9): 1513–1521.
  29. Saito T, Hayashida H, Furugen R, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56(7): 1761–1772.
  30. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007; 292(3): E740–E747.
  31. Jellinger PS, Handelsman Y, Rosenblit PD, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease ― executive summary. Endocr Pract. 2017; 23(4): 479–497.
  32. Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015; 22(4): 658–668.
  33. Le Roy T, Lécuyer E, Chassaing B, et al. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol. 2019; 17(1): 94.
  34. Cotillard A, Kennedy SP, Kong LC, et al. ANR MicroObes consortium. Dietary intervention impact on gut microbial gene richness. Nature. 2013; 500(7464): 585–588.
  35. Le Chatelier E, Nielsen T, Qin J, et al. MetaHIT consortium. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500(7464): 541–546.
  36. Jose PA, Raj D. Gut microbiota in hypertension. Curr Opin Nephrol Hypertens. 2015; 24(5): 403–409.
  37. Silveira-Nunes G, Durso DF, Jr. LRA de O, Cunha EHM, Maioli TU, Vieira AT, i in. Hypertension Is Associated With Intestinal Microbiota Dysbiosis and Inflammation in a Brazilian Population. Front Pharmacol . https://www.frontiersin.org/articles/10.3389/fphar.2020.00258/full (8.11.2020).
  38. Verhaar BJH, Prodan A, Nieuwdorp M, et al. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients. 2020; 12(10).
  39. Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009; 58(7): 1509–1517.
  40. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012; 336(6086): 1262–1267.
  41. Goffredo M, Mass K, Parks EJ, et al. Role of Gut Microbiota and Short Chain Fatty Acids in Modulating Energy Harvest and Fat Partitioning in Youth. J Clin Endocrinol Metab. 2016; 101(11): 4367–4376.
  42. Cani PD, Delzenne NM. The gut microbiome as therapeutic target. Pharmacol Ther. 2011; 130(2): 202–212.
  43. Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018; 362(6416): 776–780.
  44. Sonnenburg E, Smits S, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016; 529(7585): 212–215.
  45. Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008; 105(43): 16767–16772.
  46. Cani PD, Osto M, Geurts L, et al. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012; 3(4): 279–288.
  47. Rheinheimer J, de Souza BM, Cardoso NS, et al. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism. 2017; 74: 1–9.
  48. Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004; 101(44): 15718–15723.
  49. Schugar RC, Shih DM, Warrier M, et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep. 2017; 20(1): 2451–2461.
  50. Wahlström A, Sayin SI, Marschall HU, et al. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016; 24(1): 41–50.
  51. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006; 103(4): 1006–1011.
  52. Duran-Sandoval D, Mautino G, Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004; 53(4): 890–898.
  53. Iizuka K, Miller B, Uyeda K. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am J Physiol Endocrinol Metab. 2006; 291(2): E358–E364.
  54. Probiotics in food: health and nutritional properties and guidelines for evaluation. NLM Catalog. NCBI. https://www.ncbi.nlm.nih.gov/nlmcatalog/101617803 (5.11.2020).
  55. Mojka K. Probiotics, prebiotics and synbiotics ― characteristics and functions. Probl Hig Epidemiol. 2014; 95(3): 541–549.
  56. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, et al. Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. Int J Mol Sci. 2016; 17(6).
  57. Koutnikova H, Genser B, Monteiro-Sepulveda M, et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2019; 9(3): e017995.
  58. Dong Y, Xu M, Chen L, et al. Probiotic Foods and Supplements Interventions for Metabolic Syndromes: A Systematic Review and Meta-Analysis of Recent Clinical Trials. Ann Nutr Metab. 2019; 74(3): 224–241.
  59. Tenorio-Jiménez C, Martínez-Ramírez MJ, Gil Á, et al. Effects of Probiotics on Metabolic Syndrome: A Systematic Review of Randomized Clinical Trials. Nutrients. 2020; 12(1).
  60. Skonieczna-Żydecka K, Kaźmierczak-Siedlecka K, Kaczmarczyk M, et al. The Effect of Probiotics and Synbiotics on Risk Factors Associated with Cardiometabolic Diseases in Healthy People-A Systematic Review and Meta-Analysis with Meta-Regression of Randomized Controlled Trials. J Clin Med. 2020; 9(6).
  61. Kassaian N, Feizi A, Aminorroaya A, et al. Probiotic and synbiotic supplementation could improve metabolic syndrome in prediabetic adults: A randomized controlled trial. Diabetes Metab Syndr. 2019; 13(5): 2991–2996.
  62. Mohammadi-Sartang M, Bellissimo N, Totosy de Zepetnek JO, et al. The effect of daily fortified yogurt consumption on weight loss in adults with metabolic syndrome: A 10-week randomized controlled trial. Nutr Metab Cardiovasc Dis. 2018; 28(6): 565–574.
  63. Szulińska M, Łoniewski I, van Hemert S, et al. Dose-Dependent Effects of Multispecies Probiotic Supplementation on the Lipopolysaccharide (LPS) Level and Cardiometabolic Profile in Obese Postmenopausal Women: A 12-Week Randomized Clinical Trial. Nutrients. 2018; 10(6).
  64. Szulińska M, Łoniewski I, Skrypnik K, et al. Multispecies Probiotic Supplementation Favorably Affects Vascular Function and Reduces Arterial Stiffness in Obese Postmenopausal Women-A 12-Week Placebo-Controlled and Randomized Clinical Study. Nutrients. 2018; 10(11).
  65. Barreto FM, Colado Simão AN, Morimoto HK, et al. Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition. 2014; 30(7-8): 939–942.
  66. Tenorio-Jiménez C, Martínez-Ramírez MJ, Del Castillo-Codes I, et al. V3401 Reduces Inflammatory Biomarkers and Modifies the Gastrointestinal Microbiome in Adults with Metabolic Syndrome: The PROSIR Study. Nutrients. 2019; 11(8).
  67. Bernini LJ, Simão AN, Alfieri DF, et al. Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. Nutrition. 2016; 32(6): 716–719.
  68. Rezazadeh L, Gargari BP, Jafarabadi MA, et al. Effects of probiotic yogurt on glycemic indexes and endothelial dysfunction markers in patients with metabolic syndrome. Nutrition. 2019; 62: 162–168.
  69. Tripolt NJ, Leber B, Blattl D, et al. Short communication: Effect of supplementation with Lactobacillus casei Shirota on insulin sensitivity, β-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome--a pilot study. J Dairy Sci. 2013; 96(1): 89–95.
  70. Stadlbauer V, Leber B, Lemesch S, et al. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study. PLoS One. 2015; 10(10): e0141399.
  71. Borgeraas H, Johnson LK, Skattebu J, et al. Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2018; 19(2): 219–232.
  72. Crovesy L, Ostrowski M, Ferreira DM, et al. Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obes (Lond). 2017; 41(11): 1607–1614.
  73. Wang ZB, Xin SS, Ding LN, et al. The potential role of probiotics in controlling overweight/obesity and associated metabolic parameters in adults: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2019; 2019: 3862971.
  74. Suzumura EA, Bersch-Ferreira ÂC, Torreglosa CR, et al. Effects of oral supplementation with probiotics or synbiotics in overweight and obese adults: a systematic review and meta-analyses of randomized trials. Nutr Rev. 2019; 77(6): 430–450.
  75. López-Moreno A, Suárez A, Avanzi C, et al. Probiotic strains and intervention total doses for modulating obesity-related microbiota dysbiosis: a systematic review and meta-analysis. Nutrients. 2020; 12(7).
  76. John GK, Wang L, Nanavati J, et al. Dietary alteration of the gut microbiome and its impact on weight and fat mass: a systematic review and meta-analysis. Genes (Basel). 2018; 9(3).
  77. Pedret A, Valls RM, Calderón-Pérez L, et al. Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: a randomized controlled trial. Int J Obes (Lond). 2019; 43(9): 1863–1868.
  78. Zarrati M, Raji Lahiji M, Salehi E, et al. Effects of probiotic yogurt on serum omentin-1, adropin, and nesfatin-1 concentrations in overweight and obese participants under low-calorie diet. Probiotics Antimicrob Proteins. 2019; 11(4): 1202–1209.
  79. Gomes AC, de Sousa RG, Botelho PB, et al. The additional effects of a probiotic mix on abdominal adiposity and antioxidant Status: A double-blind, randomized trial. Obesity (Silver Spring). 2017; 25(1): 30–38.
  80. Kim J, Yun JM, Kim MiK, et al. Lactobacillus gasseri BNR17 supplementation reduces the visceral fat accumulation and waist circumference in obese adults: a randomized, double-blind, placebo-controlled trial. J Med Food. 2018; 21(5): 454–461.
  81. Sudha MR, Ahire JJ, Jayanthi N, et al. Effect of multi-strain probiotic (UB0316) in weight management in overweight/obese adults: a 12-week double blind, randomised, placebo-controlled study. Benef Microbes. 2019; 10(8): 855–866.
  82. Karbaschian Z, Mokhtari Z, Pazouki A, et al. Probiotic supplementation in morbid obese patients undergoing one anastomosis gastric bypass-mini gastric bypass (OAGB-MGB) surgery: a randomized, double-blind, placebo-controlled, clinical trial. Obes Surg. 2018; 28(9): 2874–2885.
  83. Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020; 51: 102590.
  84. Zhang Q, Wu Y, Fei X. Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicina (Kaunas). 2016; 52(1): 28–34.
  85. Rittiphairoj T, Pongpirul K, Janchot K, et al. Probiotics contribute to glycemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Adv Nutr. 2020 [Epub ahead of print].
  86. Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S, et al. Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. Daru. 2019; 27(2): 827–837.
  87. Yao K, Zeng L, He Q, et al. Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: a meta-analysis of 12 randomized controlled trials. Med Sci Monit. 2017; 23: 3044–3053.
  88. Samah S, Ramasamy K, Lim SM, et al. Probiotics for the management of type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2016; 118: 172–182.
  89. Sun J, Buys NJ. Glucose- and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr. 2016; 115(7): 1167–1177.
  90. Hu YM, Zhou F, Yuan Y, et al. Effects of probiotics supplement in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials. Med Clin (Barc). 2017; 148(8): 362–370.
  91. Kasińska MA, Drzewoski J. Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn. 2015; 125(11): 803–813.
  92. Wang X, Juan QF, He YW, et al. Multiple effects of probiotics on different types of diabetes: a systematic review and meta-analysis of randomized, placebo-controlled trials. J Pediatr Endocrinol Metab. 2017; 30(6): 611–622.
  93. Hendijani F, Akbari V. Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: A systematic review and meta-analysis. Clin Nutr. 2018; 37(2): 532–541.
  94. Jafar-Abadi MA, Dehghani A, Khalili L, et al. A meta-analysis of randomized controlled trials of the effect of probiotic food or supplement on glycemic response and body mass index in patients with type 2 diabetes, updating the evidence. Curr Diabetes Rev. 2020 [Epub ahead of print].
  95. Firouzi S, Majid HA, Ismail A, et al. Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial. Eur J Nutr. 2017; 56(4): 1535–1550.
  96. Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, et al. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab Syndr. 2018; 12(5): 617–624.
  97. Tonucci LB, Olbrich Dos Santos KM, Licursi de Oliveira L, et al. Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clin Nutr. 2017; 36(1): 85–92.
  98. Hsieh MC, Tsai WH, Jheng YP, et al. The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: a randomized, double-blinded, placebo-controlled trial. Sci Rep. 2018; 8(1): 16791.
  99. Madempudi RS, Ahire JJ, Neelamraju J, et al. Efficacy of UB0316, a multi-strain probiotic formulation in patients with type 2 diabetes mellitus: A double blind, randomized, placebo controlled study. PLoS One. 2019; 14(11): e0225168.
  100. Razmpoosh E, Javadi A, Ejtahed HS, et al. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial. Diabetes Metab Syndr. 2019; 13(1): 175–182.
  101. Sabico S, Al-Mashharawi A, Al-Daghri NM, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019; 38(4): 1561–1569.
  102. Tajabadi-Ebrahimi M, Sharifi N, Farrokhian A, et al. A randomized controlled clinical trial investigating the effect of synbiotic administration on markers of insulin metabolism and lipid profiles in overweight type 2 diabetic patients with coronary heart disease. Exp Clin Endocrinol Diabetes. 2017; 125(1): 21–27.
  103. Dixon A, Robertson K, Yung A, et al. Efficacy of probiotics in patients of cardiovascular disease risk: a systematic review and meta-analysis. Curr Hypertens Rep. 2020; 22(9): 74.
  104. Ejtahed HS, Ardeshirlarijani E, Tabatabaei-Malazy O, et al. Effect of probiotic foods and supplements on blood pressure: a systematic review of meta-analyses studies of controlled trials. J Diabetes Metab Disord. 2020; 19(1): 617–623.
  105. Chi C, Li C, Wu D, et al. Effects of probiotics on patients with hypertension: a systematic review and meta-analysis. Curr Hypertens Rep. 2020; 22(5): 34.
  106. He J, Zhang F, Han Y. Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: A meta-analysis of RCTs. Medicine (Baltimore). 2017; 96(51): e9166.
  107. Ito M, Kusuhara S, Yokoi W, et al. Streptococcus thermophilus fermented milk reduces serum MDA-LDL and blood pressure in healthy and mildly hypercholesterolaemic adults. Benef Microbes. 2017; 8(2): 171–178.
  108. Mo R, Zhang X, Yang Y. Effect of probiotics on lipid profiles in hypercholesterolaemic adults: A meta-analysis of randomized controlled trials. Med Clin (Barc). 2019; 152(12): 473–481.
  109. Pourrajab B, Fatahi S, Dehnad A, et al. The impact of probiotic yogurt consumption on lipid profiles in subjects with mild to moderate hypercholesterolemia: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2020; 30(1): 11–22.
  110. Yan S, Tian Z, Li M, et al. Effects of probiotic supplementation on the regulation of blood lipid levels in overweight or obese subjects: a meta-analysis. Food Funct. 2019; 10(3): 1747–1759.
  111. Gadelha CJ, Bezerra AN. Effects of probiotics on the lipid profile: systematic review. J Vasc Bras. 2019; 18: e20180124.
  112. Wu Y, Zhang Q, Ren Y, et al. Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PLoS One. 2017; 12(6): e0178868.
  113. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019; 20(4): 461–472.
  114. An HMi, Park SY, Lee DoK, et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 2011; 10: 116.
  115. Zheng HJ, Guo J, Jia Qi, et al. The effect of probiotic and synbiotic supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019; 142: 303–313.
  116. Tabrizi R, Ostadmohammadi V, Lankarani KB, et al. The effects of probiotic and synbiotic supplementation on inflammatory markers among patients with diabetes: A systematic review and meta-analysis of randomized controlled trials. Eur J Pharmacol. 2019; 852: 254–264.