Tom 14, Nr 6 (2020)
Wybrane problemy kliniczne
Opublikowany online: 2021-01-07
Pobierz cytowanie

Znaczenie ,,zapomnianego narządu” — mikrobioty jelitowej — w rozwoju i terapii zaburzeń neuropsychiatrycznych

Hanna Karakuła-Juchnowicz
Forum Medycyny Rodzinnej 2020;14(6):265-280.

dostęp płatny

Tom 14, Nr 6 (2020)
Wybrane problemy kliniczne
Opublikowany online: 2021-01-07

Streszczenie

W ostatnich latach wiedza dotycząca znaczenia ekosystemu jelito wego dla utr zymania homeostazy organizmu ludzkiego znacząco się pogłębiła. Coraz więcej dowodów potwierdza, że mikrobiota jelitowa to kluczowy mediator dwukierunkowej komunikacji pomiędzy przewodem pokarmowym i centralnym układem nerwowym. Oś mózg-mikrobiota-jelita stała się atrakcyjnym punktem uchwytu terapii licznych zaburzeń związanych ze zdrowiem psychicznym. Proponowanymi formami terapii są psychobiotyki, będące grupą ściśle wyselekcjonowanych probiotyków, wykazujących korzystne działanie na stan psychiczny oraz prebiotyki czyli substancje stymulujące rozwój ekosystemu jelitowego. W porównaniu z populacją osób zdrowych pacjenci cierpiący na zabur zenia neuropsychiatryczne mają inny ilościowy i jakościowy skład mikrobioty jelitowej. Zmiany te potwierdzono u osób z autyzmem, depresją, schizofrenią, chorobą afektywną dwubiegunową, chorobą Parkinsona i Alzheimera. Wstępne wyniki badań obserwacyjnych, translacyjnych i interwencyjnych są bardzo obiecujące. Dalsze prace badawcze umożliwią w pełni zdeterminowanie znaczenia mikroorganizmów w utrzymaniu zdrowia oraz terapii zaburzeń neuropsychicznych.

Streszczenie

W ostatnich latach wiedza dotycząca znaczenia ekosystemu jelito wego dla utr zymania homeostazy organizmu ludzkiego znacząco się pogłębiła. Coraz więcej dowodów potwierdza, że mikrobiota jelitowa to kluczowy mediator dwukierunkowej komunikacji pomiędzy przewodem pokarmowym i centralnym układem nerwowym. Oś mózg-mikrobiota-jelita stała się atrakcyjnym punktem uchwytu terapii licznych zaburzeń związanych ze zdrowiem psychicznym. Proponowanymi formami terapii są psychobiotyki, będące grupą ściśle wyselekcjonowanych probiotyków, wykazujących korzystne działanie na stan psychiczny oraz prebiotyki czyli substancje stymulujące rozwój ekosystemu jelitowego. W porównaniu z populacją osób zdrowych pacjenci cierpiący na zabur zenia neuropsychiatryczne mają inny ilościowy i jakościowy skład mikrobioty jelitowej. Zmiany te potwierdzono u osób z autyzmem, depresją, schizofrenią, chorobą afektywną dwubiegunową, chorobą Parkinsona i Alzheimera. Wstępne wyniki badań obserwacyjnych, translacyjnych i interwencyjnych są bardzo obiecujące. Dalsze prace badawcze umożliwią w pełni zdeterminowanie znaczenia mikroorganizmów w utrzymaniu zdrowia oraz terapii zaburzeń neuropsychicznych.
Pobierz cytowanie

Słowa kluczowe

oś mózg-mikrobiota-jelita, psychobiotyki, zaburzenia neuropsychiatryczne

Informacje o artykule
Tytuł

Znaczenie ,,zapomnianego narządu” — mikrobioty jelitowej — w rozwoju i terapii zaburzeń neuropsychiatrycznych

Czasopismo

Forum Medycyny Rodzinnej

Numer

Tom 14, Nr 6 (2020)

Strony

265-280

Data publikacji on-line

2021-01-07

Rekord bibliograficzny

Forum Medycyny Rodzinnej 2020;14(6):265-280.

Słowa kluczowe

oś mózg-mikrobiota-jelita
psychobiotyki
zaburzenia neuropsychiatryczne

Autorzy

Hanna Karakuła-Juchnowicz

Referencje (104)
  1. Carabotti M, Scirocco A, Maselli MA, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015(28): 203–209.
  2. Sandhu KV, Sherwin E, Schellekens H, et al. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017; 179: 223–244.
  3. Cryan JF, O'Riordan KJ, Cowan CSM, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019; 99(4): 1877–2013.
  4. Mazidi M, Rezaie P, Kengne AP, et al. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016; 10(2 Suppl 1): S150–S157.
  5. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006; 7(7): 688–693.
  6. Ursell LK, Metcalf JL, Parfrey LW, et al. Defining the human microbiome. Nutrition Reviews . 2012; 70: S38–S44.
  7. Gong J, Yang C. Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Research International. 2012; 48(2): 916–929.
  8. Sarangi AN, Goel A, Aggarwal R. Methods for Studying Gut Microbiota: A Primer for Physicians. J Clin Exp Hepatol. 2019; 9(1): 62–73.
  9. Turner PV. The role of the gut microbiota on animal model reproducibility. Animal Model Exp Med. 2018; 1(2): 109–115.
  10. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012; 489(7415): 220–230.
  11. Sarkar A, Lehto SM, Harty S, et al. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016; 39(11): 763–781.
  12. Karakuła-Juchnowicz H, Pankowicz H, Juchnowicz D. Psychobiotics: new possibilities for treatment of affective disorders? Pharmacotherapy in Psychiatry and Neurology. 2016: 229–242.
  13. Cheng LH, Liu YW, Wu CC, et al. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J Food Drug Anal. 2019; 27(3): 632–648.
  14. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013; 74(10): 720–726.
  15. Hao Z, Wang W, Guo R, et al. Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats. Psychoneuroendocrinology. 2019; 104: 132–142.
  16. Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11(8): 506–514.
  17. Farhangi MA, Javid AZ, Sarmadi B, et al. A randomized controlled trial on the efficacy of resistant dextrin, as functional food, in women with type 2 diabetes: Targeting the hypothalamic-pituitary-adrenal axis and immune system. Clin Nutr. 2018; 37(4): 1216–1223.
  18. Grimaldi R, Gibson GR, Vulevic J, et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome. 2018; 6(1): 133.
  19. Burokas A, Arboleya S, Moloney RD, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. 2017; 82(7): 472–487.
  20. Kazemi A, Noorbala A, Azam K, et al. Effect of prebiotic and probiotic supplementation on circulating pro-inflammatory cytokines and urinary cortisol levels in patients with major depressive disorder: A double-blind, placebo-controlled randomized clinical trial. Journal of Functional Foods. 2019; 52: 596–602.
  21. Schmidt K, Cowen PJ, Harmer CJ, et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl). 2015; 232(10): 1793–1801.
  22. Mayer EA, Aziz Q, Coen S, et al. Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol Motil. 2009; 21(6): 579–596.
  23. Saulnier DM, Riehle K, Mistretta TA, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011; 141(5): 1782–1791.
  24. Janik R, Thomason LAM, Stanisz AM, et al. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage. 2016; 125: 988–995.
  25. Tillisch K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013; 144(7): 1394–401, 1401.e1.
  26. Pinto-Sanchez MI, Hall GB, Ghajar K, et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology. 2017; 153(2): 448–459.e8.
  27. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. https://pubmed.ncbi.nlm.nih.gov/28483500/ (9.08.2020).
  28. Schmidt K, Cowen PJ, Harmer CJ, et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl). 2015; 232(10): 1793–1801.
  29. Stress & the gut-brain axis: Regulation by the microbiome. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736941/ (12.08.2020).
  30. Diop L, Guillou S, Durand H. Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind, placebo-controlled, randomized trial. Nutr Res. 2008; 28(1): 1–5.
  31. Takada M, Nishida K, Kataoka-Kato A, et al. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models. Neurogastroenterol Motil. 2016; 28(7): 1027–1036.
  32. Chong HX, Yusoff NAA, Hor YY, et al. DR7 alleviates stress and anxiety in adults: a randomised, double-blind, placebo-controlled study. Benef Microbes. 2019; 10(4): 355–373.
  33. Messaoudi M, Lalonde R, Violle N, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011; 105(5): 755–764.
  34. Cowan CSM, Callaghan BL, Richardson R. The effects of a probiotic formulation (Lactobacillus rhamnosus and L. helveticus) on developmental trajectories of emotional learning in stressed infant rats. Transl Psychiatry. 2016; 6(5): e823.
  35. Callaghan BL, Cowan CSM, Richardson R. Treating Generational Stress: Effect of Paternal Stress on Development of Memory and Extinction in Offspring Is Reversed by Probiotic Treatment. Psychol Sci. 2016; 27(9): 1171–1180.
  36. Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer's disease. J Neurogastroenterol Motil. 2019; 25(1): 48–60.
  37. Fernandez-Real JM, Serino M, Blasco G, et al. Gut microbiota interacts with brain microstructure and function. The Journal of Clinical Endocrinology & Metabolism. 2015; 100(12): 4505–4513.
  38. Polidano C, Zhu A, Bornstein JC. The relation between cesarean birth and child cognitive development. Sci Rep. 2017; 7(1): 11483.
  39. Chung YC, Jin HM, Cui Y, et al. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. Journal of Functional Foods. 2014; 10: 465–474.
  40. Allen AP, Hutch W, Borre YE, et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry. 2016; 6(11): e939.
  41. Ceccarelli G, Brenchley JM, Cavallari EN, et al. Impact of High-Dose Multi-Strain Probiotic Supplementation on Neurocognitive Performance and Central Nervous System Immune Activation of HIV-1 Infected Individuals. Nutrients. 2017; 9(11).
  42. Ceccarelli G, Fratino M, Selvaggi C, et al. A pilot study on the effects of probiotic supplementation on neuropsychological performance and microRNA-29a-c levels in antiretroviral-treated HIV-1-infected patients. Brain Behav. 2017; 7(8): e00756.
  43. Boller B, Belleville S. Cognitive intervention in older adults with mild cognitive impairment. Oxford Research Encyclopedia of Psychology. 2018.
  44. Hwang YH, Park S, Paik JW, et al. Efficacy and Safety of C29-Fermented Soybean (DW2009) in Individuals with Mild Cognitive Impairment: A 12-Week, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2019; 11(2).
  45. Frontiers | Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial | Frontiers in Aging Neuroscience. https://www.frontiersin.org/articles/10.3389/fnagi.2016.00256/full (9.08.2020).
  46. Finegold SM. Desulfovibrio species are potentially important in regressive autism. Med Hypotheses. 2011; 77(2): 270–274.
  47. Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010; 16(4): 444–453.
  48. Kang DW, Ilhan ZE, Isern NG, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018; 49: 121–131.
  49. Parracho HM, Bingham MO, Gibson GR, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005; 54(Pt 10): 987–991.
  50. Wang Lv, Conlon MA, Christophersen CT, et al. Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomark Med. 2014; 8(3): 331–344.
  51. Góra B, Gofron Z, Grosiak M, et al. Toxin profile of fecal Clostridium perfringens strains isolated from children with autism spectrum disorders. Anaerobe. 2018; 51: 73–77.
  52. Kang DW, Adams JB, Gregory AC, et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017; 5(1): 10.
  53. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011; 108(38): 16050–16055.
  54. Desbonnet L, Garrett L, Clarke G, et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010; 170(4): 1179–1188.
  55. Tillmann S, Abildgaard A, Winther G, et al. Altered fecal microbiota composition in the Flinders sensitive line rat model of depression. Psychopharmacology (Berl). 2019; 236(5): 1445–1457.
  56. Aizawa E, Tsuji H, Asahara T, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016; 202: 254–257.
  57. Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015; 48: 186–194.
  58. Kelly JR, Borre Y, O' Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016; 82: 109–118.
  59. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019; 4(4): 623–632.
  60. Liśkiewicz P, Pełka-Wysiecka J, Kaczmarczyk M, et al. Fecal Microbiota Analysis in Patients Going through a Depressive Episode during Treatment in a Psychiatric Hospital Setting. J Clin Med. 2019; 8(2).
  61. Liśkiewicz P, Kaczmarczyk M, Misiak B, et al. Analysis of gut microbiota and intestinal integrity markers of inpatients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2020 [Epub ahead of print]: 110076.
  62. Romijn AR, Rucklidge JJ, Kuijer RG, et al. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust N Z J Psychiatry. 2017; 51(8): 810–821.
  63. Huang R, Wang Ke, Hu J. Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2016; 8(8).
  64. Ng QX, Peters C, Ho CY, et al. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affect Disord. 2018; 228: 13–19.
  65. Karakuła-Juchnowicz H, Dzikowski M, Pelczarska A, et al. The brain-gut axis dysfunctions and hypersensitivity to food antigens in the etiopathogenesis of schizophrenia. Psychiatr Pol. 2016; 50(4): 747–760.
  66. Zheng P, Zeng B, Liu M, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances. 2019; 5(2): eaau8317.
  67. He Y, Kosciolek T, Tang J, et al. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. Eur Psychiatry. 2018; 53: 37–45.
  68. Castro-Nallar E, Bendall ML, Pérez-Losada M, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ. 2015; 3: e1140.
  69. Pełka-Wysiecka J, Kaczmarczyk M, Bąba-Kubiś A, et al. Analysis of Gut Microbiota and Their Metabolic Potential in Patients with Schizophrenia Treated with Olanzapine: Results from a Six-Week Observational Prospective Cohort Study. J Clin Med. 2019; 8(10).
  70. Li S, Zhuo M, Huang X, et al. Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ. 2020; 8: e9574.
  71. Tomasik J, Yolken RH, Bahn S, et al. Immunomodulatory Effects of Probiotic Supplementation in Schizophrenia Patients: A Randomized, Placebo-Controlled Trial. Biomark Insights. 2015; 10: 47–54.
  72. Severance EG, Gressitt KL, Stallings CR, et al. Probiotic normalization of Candida albicans in schizophrenia: A randomized, placebo-controlled, longitudinal pilot study. Brain Behav Immun. 2017; 62: 41–45.
  73. Coello K, Hansen TH, Sørensen N, et al. Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain Behav Immun. 2019; 75: 112–118.
  74. Evans SJ, Bassis CM, Hein R, et al. The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res. 2017; 87: 23–29.
  75. Dickerson F, Adamos M, Katsafanas E, et al. Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: A randomized controlled trial. Bipolar Disord. 2018; 20(7): 614–621.
  76. Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson's disease. Mov Disord. 2015; 30(10): 1351–1360.
  77. Gut microbiota are related to Parkinson’s disease and clinical phenotype . https://pubmed.ncbi.nlm.nih.gov/25476529/ (9.08.2020).
  78. Sampson TR, Debelius JW, Thron T, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell. 2016; 167(6): 1469–1480.e12.
  79. Bedarf JR, Hildebrand F, Coelho LP, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients. Genome Med. 2017; 9(1): 1–13.
  80. Hasegawa S, Goto S, Tsuji H, et al. Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson's Disease. PLoS One. 2015; 10(11): e0142164.
  81. Hill-Burns EM, Debelius JW, Morton JT, et al. Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov Disord. 2017; 32(5): 739–749.
  82. Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord. 2015; 30(3): 350–358.
  83. Barichella M, Pacchetti C, Bolliri C, et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT. Neurology. 2016; 87(12): 1274–1280.
  84. Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019; 38(3): 1031–1035.
  85. Gosztyla ML, Brothers HM, Robinson SR. Alzheimer's Amyloid-β is an Antimicrobial Peptide: A Review of the Evidence. J Alzheimers Dis. 2018; 62(4): 1495–1506.
  86. Athari Nik Azm S, Djazayeri A, Safa M, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Appl Physiol Nutr Metab. 2018; 43(7): 718–726.
  87. Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD). Front Aging Neurosci. 2015; 7: 9.
  88. Lukiw WJ. Lipopolysaccharide and Inflammatory Signaling in Alzheimer's Disease. Front Microbiol. 2016; 7: 1544.
  89. Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer's disease. Sci Rep. 2017; 7(1): 13537.
  90. Zhuang ZQ, Shen LL, Li WW, et al. Gut Microbiota is Altered in Patients with Alzheimer's Disease. J Alzheimers Dis. 2018; 63(4): 1337–1346.
  91. Den H, Dong X, Chen M, et al. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment — a meta-analysis of randomized controlled trials. Aging (Albany NY). 2020; 12: 4010.
  92. Bagga D, Reichert JL, Koschutnig K, et al. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes. 2018; 9(6): 486–496.
  93. Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr. 2007; 61(3): 355–361.
  94. Mohammadi AA, Jazayeri S, Khosravi-Darani K, et al. The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: A randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci. 2016; 19(9): 387–395.
  95. Messaoudi M, Violle N, Bisson JF, et al. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticusR0052 andBifidobacterium longumR0175) in healthy human volunteers. Gut Microbes. 2014; 2(4): 256–261.
  96. Steenbergen L, Sellaro R, van Hemert S, et al. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015; 48: 258–264.
  97. Rao AV, Bested AC, Beaulne TM, et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009; 1(1): 6.
  98. Sanchez M, Darimont C, Panahi S, et al. Effects of a Diet-Based Weight-Reducing Program with Probiotic Supplementation on Satiety Efficiency, Eating Behaviour Traits, and Psychosocial Behaviours in Obese Individuals. Nutrients. 2017; 9(3).
  99. Raygan F, Ostadmohammadi V, Bahmani F, et al. The effects of vitamin D and probiotic co-supplementation on mental health parameters and metabolic status in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 84(Pt A): 50–55.
  100. Slykerman RF, Hood F, Wickens K, et al. Probiotic in Pregnancy Study Group. Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine. 2017; 24: 159–165.
  101. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition. 2016; 32(3): 315–320.
  102. Rudzki L, Ostrowska L, Pawlak D, et al. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019; 100: 213–222.
  103. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: a randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034030/ (26.08.2020).
  104. The Impact of Probiotic Supplements on Cognitive Parameters in Euthymic Individuals with Bipolar Disorder: A Pilot Study-Abstract-Neuropsychobiology 2020, Vol. 79, No. 1- Karger Publishers. https://www.karger.com/Article/Abstract/492537 (36.08.2020).

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Czasopismo Forum Medycyny Rodzinnej dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl