open access

Vol 82, No 1 (2023)
Original article
Submitted: 2021-10-13
Accepted: 2021-10-29
Published online: 2021-11-16
Get Citation

Morphometry and morphological analysis of carotico-clinoid foramen: an anatomical study with clinical implications

A. Priya1, R. K. Narayan2, S. K. Ghosh1, P. Kumar3
·
Pubmed: 34826131
·
Folia Morphol 2023;82(1):108-118.
Affiliations
  1. Department of Anatomy, All India Institute of Medical Sciences, Patna, India
  2. Department of Anatomy, Andaman and Nicobar Islands Institute of Medical Sciences, Port Blair, India
  3. Department of Radiodiagnosis, All India Institute of Medical Sciences, Patna, India

open access

Vol 82, No 1 (2023)
ORIGINAL ARTICLES
Submitted: 2021-10-13
Accepted: 2021-10-29
Published online: 2021-11-16

Abstract

Background: The dural fold between anterior and middle clinoid processes on mineralisation leads to the formation of caroticoclinoid foramen (CCF). Different morphology of this foramen presents with different clinical features. The present study reports the frequency of CCF in the population of Bihar, while providing an account of assimilated information from previous literature regarding the association of caroticoclinoid ligament ossification with age and human genetics.
Materials and methods: The study was conducted on 100 adult dry human skulls of unknown age and sex, and 50 lateral view radiographs of the head.
Results: Of the 100 dry skull bones, 9 presented with different forms of CCF. Bilateral complete foramina were noticed in 2 (2%) skull bones, while the incomplete foramina were observed bilaterally in 3 (3%) and unilaterally in 4 (4%) skulls. The lateral view radiograph data (n = 50) presented with a bilateral foramen in one subject and unilateral complete CCF in two different subjects. On measurements of the diameters of the complete CCF the mean values observed were 4.06 mm and 4.51 mm on the right side, while that on the left side were 5.15 mm and 4.14 mm. For the incomplete foramina, the mean values for the vertical diameter were 4.48 mm on the right and 4.19 mm on the left side, respectively.
Conclusions: The frequency of CCF in the present study population of Bihar was much lesser than that of previously studied populations. However, the variation in frequency of different morphological types of CCF was observed to be the same across populations. The variations in CCF’s metric data could help in predicting the morphological changes it causes to the clinoidal segment of the internal carotid artery, as well as in distinguishing its varieties.

Abstract

Background: The dural fold between anterior and middle clinoid processes on mineralisation leads to the formation of caroticoclinoid foramen (CCF). Different morphology of this foramen presents with different clinical features. The present study reports the frequency of CCF in the population of Bihar, while providing an account of assimilated information from previous literature regarding the association of caroticoclinoid ligament ossification with age and human genetics.
Materials and methods: The study was conducted on 100 adult dry human skulls of unknown age and sex, and 50 lateral view radiographs of the head.
Results: Of the 100 dry skull bones, 9 presented with different forms of CCF. Bilateral complete foramina were noticed in 2 (2%) skull bones, while the incomplete foramina were observed bilaterally in 3 (3%) and unilaterally in 4 (4%) skulls. The lateral view radiograph data (n = 50) presented with a bilateral foramen in one subject and unilateral complete CCF in two different subjects. On measurements of the diameters of the complete CCF the mean values observed were 4.06 mm and 4.51 mm on the right side, while that on the left side were 5.15 mm and 4.14 mm. For the incomplete foramina, the mean values for the vertical diameter were 4.48 mm on the right and 4.19 mm on the left side, respectively.
Conclusions: The frequency of CCF in the present study population of Bihar was much lesser than that of previously studied populations. However, the variation in frequency of different morphological types of CCF was observed to be the same across populations. The variations in CCF’s metric data could help in predicting the morphological changes it causes to the clinoidal segment of the internal carotid artery, as well as in distinguishing its varieties.

Get Citation

Keywords

caroticoclinoid foramen, human genetics, mineralisation

About this article
Title

Morphometry and morphological analysis of carotico-clinoid foramen: an anatomical study with clinical implications

Journal

Folia Morphologica

Issue

Vol 82, No 1 (2023)

Article type

Original article

Pages

108-118

Published online

2021-11-16

Page views

3370

Article views/downloads

1032

DOI

10.5603/FM.a2021.0128

Pubmed

34826131

Bibliographic record

Folia Morphol 2023;82(1):108-118.

Keywords

caroticoclinoid foramen
human genetics
mineralisation

Authors

A. Priya
R. K. Narayan
S. K. Ghosh
P. Kumar

References (55)
  1. Aggrawal B, Gupta M, Kumar H. Ossified caroticoclinoid ligament of sphenoid bone. Bombay Hosp J. 2011; 53(4): 743–746.
  2. Alcaide-Leon P, López-Rueda A, Coblentz A, et al. Prominent Inferior Intercavernous Sinus on Sagittal T1-Weighted Images: A Sign of Intracranial Hypotension. AJR Am J Roentgenol. 2016; 206(4): 817–822.
  3. Alkofide EA. The shape and size of the sella turcica in skeletal Class I, Class II, and Class III Saudi subjects. Eur J Orthod. 2007; 29(5): 457–463.
  4. Archana R, Anita R, Jyoti C, et al. Incidence of osseous interclinoid bars in Indian population. Surg Radiol Anat. 2010; 32(4): 383–387.
  5. Archana BJ, Shivaleela C, Kumar GV, et al. An osteological study of incidence, morphometry, and clinical correlations of carotico-clinoid foramen in dried adult human skulls. RJPBCS. 2013; 4(3): 347–352.
  6. Azeredo RA, Liberti EA, Watanabe IS. Anatomical variations of the clinoid process of the human sphenoid bone. Arq Cent Estud Curso Odontol Univ Fed Minas Gerais. 1988; 25-26: 9–11.
  7. Bansode S, P D, Vinila B, et al. Study of incidence of the carotico-clinoid foramen in the south Indian dry adult skulls: a cross sectional study. Int J Anat Res. 2017; 5(3.1): 4051–4055.
  8. Becktor JP, Einersen S, Kjaer I. A sella turcica bridge in subjects with severe craniofacial deviations. Eur J Orthod. 2000; 22(1): 69–74.
  9. Boyan N, Ozsahin E, Kizilkanat E, et al. Surgical importance of the morphometry of the anterior clinoid process, optic strut, caroticoclinoid foramen, and interclinoid osseous bridge. Neurosurgery Quarterly. 2011; 21(2): 133–136.
  10. Brahmbhatt RJ, Bansal M, Mehta C, et al. Prevalence and dimensions of complete sella turcica bridges and its clinical significance. Indian J Surg. 2015; 77(Suppl 2): 299–301.
  11. Camarda AJ, Deschamps C, Forest D, et al. Stylohyoid chain ossification: a discussion of etiology. Oral Surg Oral Med Oral Pathol. 1989; 67(5): 508–514.
  12. Carstens M. Die selladiagnostik. Fortschr Geb Rontgenostrahlen. 1949; 71: 257–272.
  13. Catala M. [Embryology of the sphenoid bone]. J Neuroradiol. 2003; 30(4): 196–200.
  14. Cederberg RA, Benson BW, Nunn M, et al. Calcification of the interclinoid and petroclinoid ligaments of sella turcica: a radiographic study of the prevalence. Orthod Craniofac Res. 2003; 6(4): 227–232.
  15. Cireli E, Ustun EE, Yurtseven M, et al. Fossa sella turcica varyasyonlarının degerlendirilmesi I: Morfolojik ve antropolojik kriterlere gre. Ege Tıp Dergisi. 1990; 29: 364–367.
  16. Dagtekin A, Avci E, Uzmansel D, et al. Microsurgical anatomy and variations of the anterior clinoid process. Turk Neurosurg. 2014; 24(4): 484–493.
  17. Das S, Suri R, Kapur V. Ossification of caroticoclinoid ligament and its clinical importance in skull-based surgery. Sao Paulo Med J. 2007; 125(6): 351–353.
  18. Deda H, Tekdemir I, Kaplan A, et al. Sinus cavernosus mikro anatomisi (bölüm 1) kemik yaplar ve varyasyonlar. J Faculty Med Univ Ankara. 1992; 45: 477–486.
  19. Desai SD, Sreepadma S. Study of caroticoclinoid foramen in dry human skulls of North Interior Karnataka. NJBMS. 2010; 1: 60–64.
  20. Erturk M, Kayalioglu G, Govsa F. Anatomy of the clinoidal region with special emphasis on the caroticoclinoid foramen and interclinoid osseous bridge in a recent Turkish population. Neurosurg Rev. 2004; 27(1): 22–26.
  21. Evans BT. Infratemporal and pterygopalatine fossae and temporomandibular joint. In: Standring S, Anand N (eds.) Gray’s Anatomy: The Anatomical Basis of Clinical Practice. Elsevier, Philadelphia 2016: 534–555.
  22. Fernandez-Miranda JC, Tormenti M, Latorre F, et al. Endoscopic endonasal middle clinoidectomy: anatomic, radiological, and technical note. Neurosurgery. 2012; 71(2 Suppl): 233–239.
  23. Freire AR, Rossi A, Prado FB, et al. Caroticoclinoid foramen in human skulls: incidence, morphometry and its clinical implications. Int J Morphol. 2011; 29(2): 427–431.
  24. Galdames IS, Matamala DZ, Smith R. Ossification of the sella turcica and clinoid ligments: case report, morphological study and literature review. Int J Morphol. 2008; 26(4): 799–801.
  25. Gibelli D, Cellina M, Gibelli S, et al. Sella turcica bridging and ossified carotico-clinoid ligament: Correlation with sex and age. Neuroradiol J. 2018; 31(3): 299–304.
  26. Gurun R, Magden O, Ertem AD. Foramen corticoclinoideum. Cerrahpasa Tıp Dergisi. 1994; 25: 685–691.
  27. Gupta V, Khandelwal N, Mathuria SN, et al. Calcified interclinoid ligament: an unusual cause of misinterpretation on cerebral CT angiography. Clin Radiol. 2013; 68(7): e426–e428.
  28. Inoue T, Rhoton AL, Theele D, et al. Surgical approaches to the cavernous sinus: a microsurgical study. Neurosurgery. 1990; 26(6): 903–932.
  29. Kanjiya D. Incidence of ossified interclinoid bars in dry human skulls of Gujarat state. IJBAR. 2013; 3(12).
  30. Kapur E, Mehić A. Anatomical variations and morphometric study of the optic strut and the anterior clinoid process. Bosn J Basic Med Sci. 2012; 12(2): 88–93.
  31. Keyes JEL. Observations on four thousand optic foramina in human skulls of known origin. Arch Ophthalmol. 1935; 13(4): 538–568.
  32. Kjaer I. Ossification of the human fetal basicranium. J Craniofac Genet Dev Biol. 1990; 10(1): 29–38.
  33. Kolagi S, Herur A, Patil G, et al. Complete sella turcica bridges prevalence and dimensions. J Anat Soc India. 2011; 60(1): 22–25.
  34. Kucia A, Jankowski T, Siewniak M, et al. Sella turcica anomalies on lateral cephalometric radiographs of Polish children. Dentomaxillofac Radiol. 2014; 43(8): 20140165.
  35. Lee HY, Chung IH, Choi BY, et al. Anterior clinoid process and optic strut in Koreans. Yonsei Med J. 1997; 38(3): 151–154.
  36. Leonardi R, Barbato E, Vichi M, et al. A sella turcica bridge in subjects with dental anomalies. Eur J Orthod. 2006; 28(6): 580–585.
  37. Magadum A, Jevoor P, Dixit D, et al. A study of caroticoclinoid foramen in the South Indian skulls: Incidence, morphometry, and its clinical correlations. BIOMIRROR, An Open Access Journal. 2012; 3(5): 1–3.
  38. Mallik S, Santanu VG. Bilateral “carotico-clinoid foramen” with “sella turcica bridge”: a case report. Anat Physiol. 2015; 5(S5).
  39. Manjima S, Naik Z, Keluskar V, et al. Multiple jaw cysts-unveiling the Gorlin-Goltz syndrome. Contemp Clin Dent. 2015; 6(Suppl 1): S102–S105.
  40. Marsan G, Oztas E. Incidence of bridging and dimensions of sella turcica in Class I and Class III Turkish adult female patients. World J Orthod. 2009; 2: 99–103.
  41. Meyer-Marcotty P, Reuther T, Stellzig-Eisenhauer A. Bridging of the sella turcica in skeletal Class III subjects. Eur J Orthod. 2010; 32(2): 148–153.
  42. Miller C, Chamoun R, Beahm D. Morphometric analysis of the middle clinoid process using maxillofacial computed tomography scans. Oper Neurosurg (Hagerstown). 2017; 13(1): 124–130.
  43. Murshed M, Schinke T, McKee MD, et al. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol. 2004; 165(5): 625–630.
  44. Narayan RK, Asghar A, Ghosh SK. Ossification around intercavernous sinus: an osteological finding that can complicate trans-sphenoidal surgery. Morphologie. 2020; 104(347): 280–286.
  45. Natsis K, Piagkou M, Lazaridis N, et al. Incidence and morphometry of sellar bridges and related foramina in dry skulls: Their significance in middle cranial fossa surgery. J Craniomaxillofac Surg. 2018; 46(4): 635–644.
  46. Ota N, Tanikawa R, Miyazaki T, et al. Surgical microanatomy of the anterior clinoid process for paraclinoid aneurysm surgery and efficient modification of extradural anterior clinoidectomy. World Neurosurg. 2015; 83(4): 635–643.
  47. Ozdoğmuş O, Saka E, Tulay C, et al. The anatomy of the carotico-clinoid foramen and its relation with the internal carotid artery. Surg Radiol Anat. 2003; 25(3-4): 241–246.
  48. Peker T, Anil A, Gülekon N, et al. The incidence and types of sella and sphenopetrous bridges. Neurosurg Rev. 2006; 29(3): 219–223.
  49. Purohit BJ, Singh PR. Incidence, anatomy and clinical significance of carotico-clinoid foramen and interclinoid osseous bridge in human skulls in gujarat region. Int J Anat Radiol Surg. 2018; 7(2): 33–37.
  50. Sharma A, Rieth GE, Tanenbaum JE, et al. A morphometric survey of the parasellar region in more than 2700 skulls: emphasis on the middle clinoid process variants and implications in endoscopic and microsurgical approaches. J Neurosurg. 2018; 129(1): 60–70.
  51. Shaikh S, Ukey R, Kawale D, et al. Study of carotico-clinoid foramen in dry human skull of aurangabad district. Int J Basic Med Sci. 2013; 5(3): 148–154.
  52. Steitz SA, Speer MY, McKee MD, et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol. 2002; 161(6): 2035–2046.
  53. Skrzat J, Szewczyk R, Walocha J. The ossified interclinoid ligament. Folia Morphol. 2006; 65(3): 242–245.
  54. Suprasanna K, Kumar A. Surgically relevant bony anatomical variations in paraclinoid aneurysms-three-dimensional multi-detector row computed tomography-based study. J Neurosci Rural Pract. 2019; 8(3): 330–334.
  55. Touska P, Hasso S, Oztek A, et al. Skull base ligamentous mineralisation: evaluation using computed tomography and a review of the clinical relevance. Insights Imaging. 2019; 10(1): 55.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, Świętokrzyska 73, 80–180 Gdańsk, Poland

tel.: +48 58 320 94 94, faks: +48 58 320 94 60, e-mail: viamedica@viamedica.pl