Online first
Review article
Published online: 2024-07-02

open access

Page views 94
Article views/downloads 82
Get Citation

Connect on Social Media

Connect on Social Media

The cerebellum: the ‘little’ brain and its big role

Natalia Melka1, Adriana Pszczolińska1, Ilona Klejbor23, Janusz Moryś24
Pubmed: 38963083

Abstract

Reports from recent years provide compelling evidence about the structure and the existence of functional topography in the cerebellum. However, most of them focused on the motor functions of the cerebellum. Recent studies suggest the involvement of the posterior lobe of the cerebellum in the context of neurodegenerative and cognitive disorders. The pathophysiology of these diseases is not sufficiently understood, and recent studies indicate that it could also affect additional subregions of the cerebellum. Anatomical and clinical studies, combined with neuroimaging, provide new ways of thinking about the organization and functioning of the cerebellum. This review summarizes knowledge about the topography and functions of the cerebellum, and focuses on its anatomical and functional contributions to the development of neurological diseases.

Article available in PDF format

View PDF Download PDF file

References

  1. Adamaszek M, D'Agata F, Ferrucci R, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017; 16(2): 552–576.
  2. Alalade E, Denny K, Potter G, et al. Altered cerebellar-cerebral functional connectivity in geriatric depression. PLoS One. 2011; 6(5): e20035.
  3. Anderson CM, Teicher MH, Polcari A, et al. Abnormal T2 relaxation time in the cerebellar vermis of adults sexually abused in childhood: potential role of the vermis in stress-enhanced risk for drug abuse. Psychoneuroendocrinology. 2002; 27(1-2): 231–244.
  4. Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009; 10(9): 670–681.
  5. Ashida R, Cerminara NL, Brooks J, et al. Principles of organization of the human cerebellum: macro- and microanatomy. Handb Clin Neurol. 2018; 154: 45–58.
  6. Baek SJi, Park JS, Kim J, et al. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. Elife. 2022; 11.
  7. Barski JJ, Hartmann J, Rose CR, et al. Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci. 2003; 23(8): 3469–3477.
  8. De Bellis MD, Hooper SR, Chen SD, et al. Posterior structural brain volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Dev Psychopathol. 2015; 27(4 Pt 2): 1555–1576.
  9. Benarroch E. What is the role of norepinephrine in cerebellar modulation and stress-induced episodic ataxia? Neurology. 2023; 100(8): 383–386.
  10. Bhattacharya K, Saadia D, Eisenkraft B, et al. Brain magnetic resonance imaging in multiple-system atrophy and Parkinson disease: a diagnostic algorithm. Arch Neurol. 2002; 59(5): 835–842.
  11. Blatt GJ, Oblak AL, Schmahmann JD. Cerebellar connections with limbic circuits: Anatomy and functional implications. In: Manto M, Schmahmann JD, Rossi F. et al. ed. Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht 2013.
  12. Blatt GJ, Oblak AL, Schmahmann JD. Cerebellar connections with limbic circuits: Anatomy and functional implications. In: Manto MJ, Schmahmann JD, Rossi F. ed. Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht 2013: 479–496.
  13. Bogoian HR, King TZ, Turner JA, et al. Linking depressive symptom dimensions to cerebellar subregion volumes in later life. Transl Psychiatry. 2020; 10(1): 201.
  14. Bogovic JA, Bazin PL, Ying SH, et al. Automated segmentation of the cerebellar lobules using boundary specific classification and evolution. Inf Process Med Imaging. 2013; 23: 62–73.
  15. Brooks SJ, Naidoo V, Roos A, et al. Early-life adversity and orbitofrontal and cerebellar volumes in adults with obsessive-compulsive disorder: voxel-based morphometry study. Br J Psychiatry. 2016; 208(1): 34–41.
  16. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013; 80(3): 807–815.
  17. Carrion VG, Weems CF, Watson C, et al. Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric posttraumatic stress disorder: an MRI study. Psychiatry Res. 2009; 172(3): 226–234.
  18. Chakravarty MM, Steadman P, van Eede MC, et al. Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp. 2013; 34(10): 2635–2654.
  19. Chen HJ, Zhang Li, Ke J, et al. Altered resting-state dorsal anterior cingulate cortex functional connectivity in patients with post-traumatic stress disorder. Aust N Z J Psychiatry. 2019; 53(1): 68–79.
  20. Chen YL, Tu PC, Lee YC, et al. Resting-state fMRI mapping of cerebellar functional dysconnections involving multiple large-scale networks in patients with schizophrenia. Schizophr Res. 2013; 149(1-3): 26–34.
  21. Cheng B, Huang X, Li S, et al. Gray matter alterations in post-traumatic stress disorder, obsessive-compulsive disorder, and social anxiety disorder. Front Behav Neurosci. 2015; 9: 219.
  22. Clausen AN, Francisco AJ, Thelen J, et al. PTSD and cognitive symptoms relate to inhibition-related prefrontal activation and functional connectivity. Depress Anxiety. 2017; 34(5): 427–436.
  23. Clausi S, Coricelli G, Pisotta I, et al. Cerebellar damage impairs the self-rating of regret feeling in a gambling task. Front Behav Neurosci. 2015; 9: 113.
  24. Clausi S, Lupo M, Olivito G, et al. Depression disorder in patients with cerebellar damage: awareness of the mood state. J Affect Disord. 2019; 245: 386–393.
  25. Cox J, Witten IB. Striatal circuits for reward learning and decision-making. Nat Rev Neurosci. 2019; 20(8): 482–494.
  26. Cutando L, Puighermanal E, Castell L, et al. Cerebellar dopamine D2 receptors regulate social behaviors. Nat Neurosci. 2022; 25(7): 900–911.
  27. Dekeyzer S, Vanden Bossche S, De Cocker L. Anything but little: a Pictorial review on anatomy and pathology of the cerebellum. Clin Neuroradiol. 2023; 33(4): 907–929.
  28. Depping MS, Nolte HM, Hirjak D, et al. Cerebellar volume change in response to electroconvulsive therapy in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2017; 73: 31–35.
  29. Depping MS, Schmitgen MM, Bach C, et al. Abnormal cerebellar volume in patients with remitted major depression with persistent cognitive deficits. Cerebellum. 2020; 19(6): 762–770.
  30. Depping MS, Schmitgen MM, Kubera KM, et al. Cerebellar contributions to major depression. Front Psychiatry. 2018; 9: 634.
  31. Depping MS, Wolf ND, Vasic N, et al. Aberrant resting-state cerebellar blood flow in major depression. J Affect Disord. 2018; 226: 227–231.
  32. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006; 33(1): 127–138.
  33. Du L, Wang J, Meng B, et al. Early life stress affects limited regional brain activity in depression. Sci Rep. 2016; 6: 25338.
  34. Elman I, Upadhyay J, Langleben DD, et al. Reward and aversion processing in patients with post-traumatic stress disorder: functional neuroimaging with visual and thermal stimuli. Transl Psychiatry. 2018; 8(1): 240.
  35. Elsey J, Coates A, Lacadie CM, et al. Childhood trauma and neural responses to personalized stress, favorite-food and neutral-relaxing cues in adolescents. Neuropsychopharmacology. 2015; 40(7): 1580–1589.
  36. Fatemi SH, Folsom TD, Rooney RJ, et al. Expression of GABAA α2-, β1- and ε-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl Psychiatry. 2013; 3(9): e303.
  37. Fitzgerald PB, Laird AR, Maller J, et al. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008; 29(6): 683–695.
  38. Flace P, Livrea P, Basile GA, et al. The cerebellar dopaminergic system. Front Syst Neurosci. 2021; 15: 650614.
  39. Franklin GL, Camargo CH, Meira AT, et al. The role of the cerebellum in Huntington's disease: a systematic review. Cerebellum. 2021; 20(2): 254–265.
  40. Golkar A, Johansson E, Kasahara M, et al. The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain. PLoS One. 2014; 9(9): e104550.
  41. Guell X, Schmahmann J. Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum. 2020; 19(1): 1–5.
  42. Guo W, Liu F, Xue Z, et al. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 44: 51–57.
  43. Habas C. Research note: a resting-state, cerebello-amygdaloid intrinsically connected network. Cerebellum Ataxias. 2018; 5: 4.
  44. Habas C, Kamdar N, Nguyen D, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009; 29(26): 8586–8594.
  45. Hall SA, Brodar KE, LaBar KS, et al. Neural responses to emotional involuntary memories in posttraumatic stress disorder: differences in timing and activity. Neuroimage Clin. 2018; 19: 793–804.
  46. Hausman HK, Jackson TB, Goen JRM, et al. From synchrony to asynchrony: cerebellar-basal ganglia functional circuits in young and older adults. Cereb Cortex. 2020; 30(2): 718–729.
  47. He Y, Wang Y, Chang TT, et al. Abnormal intrinsic cerebro-cerebellar functional connectivity in un-medicated patients with bipolar disorder and major depressive disorder. Psychopharmacology (Berl). 2018; 235(11): 3187–3200.
  48. Heath RG, Harper JW. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Exp Neurol. 1974; 45(2): 268–287.
  49. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009; 3: 31.
  50. Hoche F, Guell X, Vangel MG, et al. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018; 141(1): 248–270.
  51. Holmes SE, Scheinost D, DellaGioia N, et al. Cerebellar and prefrontal cortical alterations in PTSD: structural and functional evidence. Chronic Stress (Thousand Oaks). 2018; 2.
  52. Jacobs HIL, Hedden T, Schultz AP, et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci. 2018; 21(3): 424–431.
  53. Jung SeJ, Vlasov K, D'Ambra AF, et al. Novel cerebello-amygdala connections provide missing link between cerebellum and limbic system. Front Syst Neurosci. 2022; 16: 879634.
  54. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003; 23(23): 8432–8444.
  55. Kostadinov D, Beau M, Blanco-Pozo M, et al. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci. 2019; 22(6): 950–962.
  56. Kutzelnigg A, Faber-Rod JC, Bauer J, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007; 17(1): 38–44.
  57. Lanore F, Rothman J, Coyle D, et al. Norepinephrine controls the gain of the inhibitory circuit in the cerebellar input layer. bioRxiv. 2019; [preprint].
  58. Leggio M, Olivito G. Topography of the cerebellum in relation to social brain regions and emotions. Handb Clin Neurol. 2018; 154: 71–84.
  59. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000; 123 ( Pt 5): 1041–1050.
  60. Li G, Ma X, Bian H, et al. A pilot fMRI study of the effect of stressful factors on the onset of depression in female patients. Brain Imaging Behav. 2016; 10(1): 195–202.
  61. Lim L, Hart H, Mehta M, et al. Grey matter volume and thickness abnormalities in young people with a history of childhood abuse. Psychol Med. 2018; 48(6): 1034–1046.
  62. Lo RY, Figueroa KP, Pulst SM, et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016; 22: 87–92.
  63. Ma Q, Zeng LL, Shen H, et al. Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res. 2013; 1495: 86–94.
  64. Malacarne V. Nuova esposizione della struttura del cerveletto umano. G. Briolo, Torino 1776.
  65. Mapelli L, Soda T, D'Angelo E, et al. The cerebellar involvement in autism spectrum disorders: from the social brain to mouse models. Int J Mol Sci. 2022; 23(7).
  66. Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997; 9(3): 471–481.
  67. Miterko LN, Baker KB, Beckinghausen J, et al. Consensus paper: experimental neurostimulation of the cerebellum. Cerebellum. 2019; 18(6): 1064–1097.
  68. Moorhead TW, McKirdy J, Sussmann JED, et al. Progressive gray matter loss in patients with bipolar disorder. Biol Psychiatry. 2007; 62(8): 894–900.
  69. Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol. 2019; 54: 100774.
  70. Naegeli C, Zeffiro T, Piccirelli M, et al. Locus coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder. Biol Psychiatry. 2018; 83(3): 254–262.
  71. Okugawa G, Sedvall GC, Agartz I. Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry. 2003; 160(9): 1614–1617.
  72. Okumuş B, Besenek M, Sönmez D, et al. Cerebellum and nucleus caudatus asymmetry in major depressive disorder. J Surg Med. 2022; 6(4): 470–475.
  73. Ozol K, Hayden J, Oberdick J, et al. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999; 412(1): 95–111, doi: 10.1002/(sici)1096-9861(19990913)412:1<95::aid-cne7>3.3.co;2-p.
  74. Philip NS, Kuras YI, Valentine TR, et al. Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress. Psychiatry Res. 2013; 214(3): 247–253.
  75. Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci. 2020; 15(5): 599–613.
  76. Pine A, Sadeh N, Ben-Yakov A, et al. Knowledge acquisition is governed by striatal prediction errors. Nat Commun. 2018; 9(1): 1673.
  77. Prestori F, Mapelli L, D'Angelo E. Diverse neuron properties and complex network dynamics in the cerebellar cortical inhibitory circuit. Front Mol Neurosci. 2019; 12: 267.
  78. Qi Z, An Y, Zhang Mo, et al. Altered cerebro-cerebellar limbic network in AD spectrum: a resting-state fMRI study. Front Neural Circuits. 2019; 13: 72.
  79. Rajmohan V, Mohandas E. The limbic system. Indian J Psychiatry. 2007; 49(2): 132–139.
  80. Ramnani N. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum. 2012; 11(2): 366–383.
  81. Real E, Subirà M, Alonso P, et al. Brain structural correlates of obsessive-compulsive disorder with and without preceding stressful life events. World J Biol Psychiatry. 2016; 17(5): 366–377.
  82. Riou A, Houvenaghel JF, Dondaine T, et al. Functional role of the cerebellum in Parkinson disease: a PET study. Neurology. 2021; 96(23): e2874–e2884.
  83. Rodda RA. Cerebellar atrophy in Huntington's disease. J Neurol Sci. 1981; 50(1): 147–157.
  84. Romero JE, Coupé P, Giraud R, et al. CERES: A new cerebellum lobule segmentation method. Neuroimage. 2017; 147: 916–924.
  85. Romero JE, Coupe P, Lanuza E, et al. Alzheimer's Disease Neuroimaging Initiative. Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: A MRI analysis. Hum Brain Mapp. 2021; 42(5): 1287–1303.
  86. Rondi-Reig L, Paradis AL, Fallahnezhad M. A Liaison brought to light: cerebellum-hippocampus, partners for spatial cognition. Cerebellum. 2022; 21(5): 826–837.
  87. Rüb U, Hoche F, Brunt ER, et al. Degeneration of the cerebellum in Huntington's disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol. 2013; 23(2): 165–177.
  88. Saitow F, Hirono M, Suzuki H. Serotonin and synaptic transmission in the cerebellum. In: Manto M, Schmahmann JD, Rossi F. et al. ed. Handbook of the cerebellum and cerebellar disorders. Springer, Dordrecht 2013: 915–926.
  89. Sang Li, Qin W, Liu Y, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage. 2012; 61(4): 1213–1225.
  90. Schlerf JE, Verstynen TD, Ivry RB, et al. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010; 103(6): 3330–3336.
  91. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997; 41: 31–60.
  92. Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997; 41: 433–440.
  93. Schutter DJ, Koolschijn PC, Peper JS, et al. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers. PLoS One. 2012; 7(5): e37252.
  94. Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007; 27(9): 2349–2356.
  95. Sjöbeck M, Englund E. Alzheimer's disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord. 2001; 12(3): 211–218.
  96. Stanley AT, Post MR, Lacefield C, et al. Norepinephrine release in the cerebellum contributes to aversive learning. Nat Commun. 2023; 14(1): 4852.
  97. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009; 44(2): 489–501.
  98. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010; 46(7): 831–844.
  99. Strata P. The emotional cerebellum. Cerebellum. 2015; 14(5): 570–577.
  100. Streng ML, Tetzlaff MR, Krook-Magnuson E. Distinct fastigial output channels and their impact on temporal lobe seizures. J Neurosci. 2021; 41(49): 10091–10107.
  101. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009; 32: 413–434.
  102. Sussman D, Pang EW, Jetly R, et al. Neuroanatomical features in soldiers with post-traumatic stress disorder. BMC Neurosci. 2016; 17: 13.
  103. Tam WY, Wang X, Cheng ASK, et al. In search of molecular markers for cerebellar neurons. Int J Mol Sci. 2021; 22(4).
  104. Thomann PA, Schläfer C, Seidl U, et al. The cerebellum in mild cognitive impairment and Alzheimer's disease — a structural MRI study. J Psychiatr Res. 2008; 42(14): 1198–1202.
  105. Tsai PT, Hull C, Chu Y, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012; 488(7413): 647–651.
  106. Vai B, Riberto M, Ghiglino D, et al. Mild adverse childhood experiences increase neural efficacy during affective theory of mind. Stress. 2018; 21(1): 84–89.
  107. van Hoft JA, Oostland M. Serotonin in the cerebellum. In: Gruol DL, Koibuchi N, Manto M. et al. ed. Essentials of cerebellum and cerebellar disorders. Springer, Berlin 2013: 209–213.
  108. Van Overwalle F, D'aes T, Mariën P. Social cognition and the cerebellum: a meta-analytic connectivity analysis. Hum Brain Mapp. 2015; 36(12): 5137–5154.
  109. Walsh ND, Dalgleish T, Lombardo MV, et al. General and specific effects of early-life psychosocial adversities on adolescent grey matter volume. Neuroimage Clin. 2014; 4: 308–318.
  110. Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001; 2(7): 484–491.
  111. Watson TC, Becker N, Apps R, et al. Back to front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci. 2014; 8: 4.
  112. Weier K, Fonov V, Lavoie K, et al. Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)--implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum. Hum Brain Mapp. 2014; 35(10): 5026–5039.
  113. Welker WI. The significance of foliation and fissuration of cerebellar cortex. The cerebellar folium as a fundamental unit of sensorimotor integration. Arch Ital Biol. 1990; 128(2-4): 87–109.
  114. Wu T, Hallett M. Reply: The cerebellum in Parkinson's disease and parkinsonism in cerebellar disorders. Brain. 2013; 136(Pt 9): e249.
  115. Xiao Le, Bornmann C, Hatstatt-Burklé L, et al. Regulation of striatal cells and goal-directed behavior by cerebellar outputs. Nat Commun. 2018; 9(1): 3133.
  116. Yang S, Cheng Y, Mo Y, et al. Childhood maltreatment is associated with gray matter volume abnormalities in patients with first-episode depression. Psychiatry Res Neuroimaging. 2017; 268: 27–34.
  117. Yip J, Soghomonian JJ, Blatt GJ. Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction. J Neurosci Res. 2008; 86(3): 525–530.
  118. Zeidler Z, Hoffmann K, Krook-Magnuson E. HippoBellum: acute cerebellar modulation alters hippocampal dynamics and function. J Neurosci. 2020; 40(36): 6910–6926.
  119. Zhang C, Zhou P, Yuan T. The cholinergic system in the cerebellum: from structure to function. Rev Neurosci. 2016; 27(8): 769–776.
  120. Zhang XY, Wu WX, Shen LP, et al. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron. 2024; 112(7): 1165–1181.e8.
  121. Zhong Y, Liu H, Liu G, et al. A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinson's disease. NPJ Parkinsons Dis. 2022; 8(1): 82.