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Reports from recent years provide compelling evidence about the structure and 
the existence of functional topography in the cerebellum. However, most of 
them focused on the motor functions of the cerebellum. Recent studies suggest 
the involvement of the posterior lobe of the cerebellum in the context of neuro-
degenerative and cognitive disorders. The pathophysiology of these diseases is 
not sufficiently understood, and recent studies indicate that it could also affect 
additional subregions of the cerebellum. Anatomical and clinical studies, com-
bined with neuroimaging, provide new ways of thinking about the organisation 
and functioning of the cerebellum. This review summarises knowledge about 
the topography and functions of the cerebellum, and focuses on its anatomical 
and functional contributions to the development of neurological diseases. (Folia 
Morphol 2024; 83, 3: 497–508)
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INTRODUCTION 
One of the first reports linking the cerebellum 

to cognitive functions was the work of Vincenzo 
Malacarne in a book entirely devoted to the cerebel-
lum [63], in which the author correlated an individ-
ual’s intelligence level with the number and degree 
of development of cerebellar lamellae. Since then, 
more and more research has focused on non-motor 
functions, including cognitive and emotional pro-
cesses; however, interpretation and reference to the 
results were hindered by a strongly entrenched view 
regarding the purely motor role of the cerebellum. 
A breakthrough occurred after 1997 when patients 
with damage to the posterior lobe of the cerebellum 
were observed to have a series of emotional-cognitive 
symptoms that went beyond the realm of motor dys-
function previously attributed to the cerebellum. Since 
then, interest in the topic has been rapidly increasing. 

The results obtained also help in understanding why 
the cerebellum, accounting for only 10% of the total 
brain volume, has over 50% of the total number of 
neurons in the central nervous system [48, 102, 108]. 
Currently, we know that the cerebellum occupies 
an important place in the neural circuits underlying 
cognitive processes, and its numerous connections 
with the limbic system indicate a strong involvement 
in emotions [1, 11, 91]. This hypothesis is confirmed 
by clinical observations conducted in individuals with 
cerebellar hemisphere injuries, where a characteristic 
cognitive-emotional syndrome has been identified 
based on the clinical symptoms observed, also known 
as Schmahmann syndrome [91]. Concurrent research 
has shown strong connections between non-motor 
areas of the cerebral cortex and the cerebellum [15], 
demonstrating that over half of the cerebellum may 
be associated with non-motor functions, and the 
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efferent and afferent connections with the limbic 
system and cerebral cortex are the basis for explaining 
the cerebellum’s involvement in emotional processes 
and its contribution to motivation [11]. Considering 
the complex function of the cerebellum, we should 
treat this structure as a collection of more or less 
independent centres, distinguishing within it, for 
example, motor centres if they are connected to the 
motor system or the limbic one if the connections of 
these areas of the cerebellum are related to the lim-
bic system. In this approach, within the cerebellum, 
we can distinguish characteristic regions responsible 
for processing motor and non-motor information, 

including those related to emotions. The latter are 
often called the limbic cerebellum, emphasising its 
role in higher-order behavioural functions.

Cerebellar anatomy 

Over the years, several proposals for dividing the 
cerebellum have emerged. The most anatomical di-
vision of this structure is based on the existence of 
2 classic fissures present in all organisms possessing 
this structure (Fig. 1). It includes the anterior lobe, 
separated from the posterior lobe by the primary 
fissure, and the cerebellar vermis, separated from 
the posterior lobe by the posterolateral fissure. The 
second most popular division is based on functional 
zones localised parallel to the midline, including the 
vermis zone located medially, the intermediate or 
paravermal zone, and the lateral (hemispheral) zone 
located laterally. Additionally, within the cerebellar 
vermis, 10 lobules have been identified, which can 
be grouped into transverse zones [4, 5, 72] (Tab. 1). 
A unique combination of Purkinje cell phenotypes 
characterises each transverse zone, and different 
zones have distinct developmental timelines. A sim-
ple explanation for the evolutionary development 
of cerebellar lobules is that it was a way to increase 
surface area and thus adapt to the increased number 
of cells, which in turn facilitated the acquisition of 
more complex functional circuits [72, 112].

Figure 1. Depending on the chosen division, the surface of the cerebellum can be divided into lobes (based on constant fissures) or based on 
zones parallel to the median line. The latter division is more functional than anatomical. Considering the phylogenetic aspects due to the time 
of origin, we can distinguish 3 characteristic parts within the cerebellum, also reflecting the functional division of this structure. The division 
of the cerebellum based on the midline includes the vermis, paravermis, and hemispheres. The division of the vermis includes 10 lobules, 
which combine into functional transverse zones: anterior (AZ), central (CZ), posterior (PZ), and nodular zone (NZ). The anterior zone forms the 
anterior lobe (AL). The central and posterior zones form the posterior lobe (PL). The nodular zone forms the flocculonodular lobes. The division 
between the anterior and posterior lobes is demarcated by the primary fissure (pf). The phylogenetic division of the cerebellum includes: ar-
chicerebellum (nodule — X), paleocerebellum (anterior lobe — I–V), and neocerebellum (posterior lobe — VI–IX).

Table 1. Comparison of current cerebellar divisions with a divi-
sion into lobules.

Lobes (based on fissures) Lobules (based 
on folia)

Transverse zone

Anterior
(Paleocerebellum)

I
II
III
IV
V

AZ (anterior zone)

Posterior
(Neocerebellum)

VI
VII

CZ (central zone)

VIII
IX

PZ (posteriori zone)

Flocculonodular
(Archicerebellum)

X NZ (nodular zone)
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Considering the phylogenetic development of 
the cerebellum, we distinguish 3 characteristic parts 
within this structure: archicerebellum, paleocerebel-
lum, and neocerebellum. The phylogenetic division of 
the cerebellum largely corresponds to the traditional 
functional division of this structure. The oldest part of  
the cerebellum, the cerebellar vermis, is connected to the  
vestibular system and the reticular formation of  
the brainstem. This system participates in the control 
of balance, posture, and eye movements. The slightly 
younger paleocerebellum, also called the spinocere-
bellum, includes the anterior lobe, the vermis, and the 
paravermis. Until recently, this part was considered 
the main region responsible for controlling postural 
movements of the body; however, modern research 
has shown that the vermis has many connections 
with subcortical areas of the brain directly involved 
in motivation and emotions, and the term “limbic 
cerebellum” emphasises these connections. The pos-
terior lobes, considered the youngest evolutionary 
structures, include the third and last system and are 
called the neocerebellum.

Methods of cerebellar segmentation

Due to the complex division of the cerebellum, 
which is also subject to classification changes, man-
ual division and description of the cerebellum is an 
extremely time-consuming process. To shorten this 
time, various semi-automatic or automatic methods 
supporting researchers in describing and identifying 
individual cerebellar lobules have been developed. One 
of the first semi-automatic algorithms is the spatially 
unbiased infra-tentorial template (SUIT) [31]. How-
ever, this method does not allow for the detection 
of anatomical differences. More recent and accurate 
methods are fully automatic, such as the automat-
ic classification of cerebellar lobules algorithm using 
implicit multi-boundary evolution (ACCLAIM) [13], the 
method based on multi-atlas segmentation called MA-
GeT brain (multiple automatically generated templates 
of different brains) [17], and the rapid automatic seg-
mentation of the human cerebellum and its lobules 
(RASCAL) [111], or the innovative method of cerebellar 
lobule segmentation called CERES (cerebellum segmen-
tation) [83, 84]. Undoubtedly, the implementation of  
a technique that allows for automatic segmentation in  
a maximally shortened time offers tremendous poten-
tial for working with a large number of patients and 
helps better understand the anatomy of the cerebellum 
and the consequences of its disorders.

Cellular structure

The cerebellum consists of an outer grey mat-
ter area, an inner white matter area, and 3 pairs of 
deep cerebellar nuclei [26]. The cerebellar cortex has  
3 layers [102] (Fig. 2). The outermost layer is the 
molecular layer containing inhibitory interneurons, 
the intermediate layer contains Purkinje cells, and the  
innermost layer is the granular cell layer. Purkinje cells 
are a unique type of neuron with a specific structure. 
Due to their massive and highly branched dendritic 
tree, they can integrate large amounts of informa-
tion and learn through dendritic remodeling. The 
Purkinje cell layer integrates excitatory signals from  
the granular layer with inhibitory information from the  
molecular layer. Purkinje cells are the only cells that 
project out of the cerebellum and are essential for 
motor coordination [7], as well as for other important 
cognitive functions such as emotions. The ability to 
characterise each type of cerebellar neuron is cru-
cial for understanding cerebellar pathology [102]. 
Various cerebellar defects, including developmental 
dysfunctions, can manifest as motor disorders and be 
associated with non-motor states such as depression 
and cognitive deficits [29, 40, 98]. Changes in cere-
bellar volume and molecular alterations in Purkinje 
cells have been noted in patients with affective disor-
ders, depression, as well as neurotic traits [1, 67, 92]. 
Purkinje cell involvement in disorders such as autism 
is also indicated. Postmortem studies in patients with 
autism spectrum disorders have shown loss of cer-
ebellar Purkinje cells [104], and it is also suggested 
that dysregulated GABA production in Purkinje cells 
may contribute to the clinical features of autism [116]. 
The availability of cell-specific markers is essential for 
understanding the role of each type of neuron in the 
cerebellum. Numerous molecular markers, such as  
the calcium-binding protein calbindin D28K (CB), can 
be used for labelling and quantitatively assessing 
Purkinje cells. Purkinje cells are the only cerebellar cells 
that express CB. Staining of the cerebellum for cal-
bindin expression reveals regular transverse divisions, 
with distinct transition regions that divide the vermis 
into the aforementioned 4 transverse zones [7]. It is 
also important to note that CB in Purkinje cells plays  
a significant role in coordinating motor behaviours 
[7]. Studies indicate that the selective genetic deletion 
of calbindin from cerebellar Purkinje cells results in 
a new mouse phenotype with marked deficits in the 
precision of motor coordination and the processing 
of visual information important for coordination.
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Where do emotions reside in the cerebellum?

Anatomical evidence

It has long been known that the cerebellum has di-
rect connections with motor centres (Fig. 3). However, 
contemporary research has also shown bidirectional 

connections of the cerebellum with brain regions 
involved in emotion regulation. Understanding the 
physiological significance of these connections has 
a fundamental impact on explaining the role of the 
cerebellum in higher cognitive functions [78] because 

Figure 2. Cytoarchitecture and neuronal circuitry of the cerebellar cortex: Purkinje cells make synaptic connections with granule cells. Purkin-
je cells transfer the signals from granule cells and other interneurons and send the final output to the deep cerebellar nuclei. Climbing fibres 
and mossy fibres are the main afferents from outside the cerebellum [76] the activity of inhibitory interneurons proved the key to endow net-
works with complex computational and dynamic properties. In the last 50 years, the prevailing view on the functional role of cerebellar cor-
tical inhibitory circuits was that excitatory and inhibitory inputs sum spatially and temporally in order to determine the motor output through 
Purkinje cells (PCs).

Figure 3. The image depicts a macroscopic diagram of the cerebellum and indicates the regions and type of function with which they are 
mainly associated.
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it explains the mechanisms through which these areas 
mutually influence each other [11, 52, 76]. Extensive 
connections have also been identified and described 
between the cerebellum and prefrontal cortical and 
posterior parietal regions [79, 110]. The posterior 
lobe, known as the limbic cerebellum, plays a cru-
cial role in these loops, as it has connections with 
the prefrontal, temporal, cingulate, and posterior 
parietal cortices. Additionally, connections with the 
brainstem have been demonstrated, which through 
neurotransmitters such as norepinephrine, serotonin, 
and dopamine, influence mood regulation in humans 
[37, 56, 87].

The cerebello-amygdala circuit — a missing link? 

In light of current research findings, the cerebel-
lum is described as an essential structure for affective, 
cognitive, and memory processing. Functional con-
nections between the cerebellum and the amygdala, 
a key structure in the limbic system responsible for 
emotional processes, were identified over 4 decades 
ago [47]. Recent anatomical evidence has ruled out 
the existence of a monosynaptic connection between 
these structures [52]. Using transneuronal tracing 
techniques, researchers described a new polysynaptic 
network of connections between the deep cerebellar 
nuclei and the basolateral part of the amygdala, pass-
ing through the thalamus [52]. Additionally, the latest 
reports indicate that there is a functional connectivity 
between the cerebellum and the amygdala, which is 
correlated with anxiety [119]. This discovery marks 
the beginning of a path towards new knowledge 
regarding the role of the cerebellum in influencing 
the emotion-controlling structure in humans.

“HippoBellum”

Years of research yielding convergent results re-
port on the role of the cerebellum in spatial cognition. 
There is evidence of anatomical and functional con-
nections between the cerebellum and the hippocam-
pus [85, 117]. Evidence of communication between 
these structures provides the opportunity to delineate 
new therapeutic pathways for pathologies related 
to the hippocampus. The therapeutic potential in an 
increasing number of diverse neuropsychiatric and 
neurological diseases is provided by experimental cer-
ebellar neurostimulation [66]. Studies report on the 
potential use of the cerebellum in treating temporal 
lobe epilepsy [99]. There is growing interest in the 

clinical aspect of the cerebellum due to its involve-
ment in cognitive functions, including episodic mem-
ory. The role of the cerebellum in cognitive deficits 
is also indicated [51]. Influencing the hippocampus 
through cerebellar stimulation opens up possibilities 
in the therapy of hippocampal-dependent memory 
disorders occurring in neurodegenerative diseases 
such as Alzheimer’s.

Not only motor support — important 
collaboration between basal ganglia and 
cerebellum

Just like the cerebellum, the basal ganglia were 
until recently overlooked in the context of emotional 
functions [74]. Their connections with the cerebel-
lum were not considered at all, and it was thought 
that these structures modulate cortical activity in-
dependently of each other, through separate path-
ways passing through the thalamus. Similar to the 
cerebellum, the basal ganglia were attributed only  
a motor function. Recent reports describe the involve-
ment of these structures not only in motor but also 
in cognitive functions. Today, it is known that there 
are direct connections between the cerebellum and 
the basal ganglia, meaning that they jointly shape 
and adapt both motor and emotional functions [24, 
45, 54, 75, 114]. Their functions are not separate but 
overlap. The cerebellum precisely adjusts the response 
to improve the final outcome according to the cur-
rent physiological state [74]. Such a mechanism of 
cooperation, consistent with the context of a given 
situation, allows for the generation of a proportional 
and situationally appropriate response. Understand-
ing the importance of this collaboration between the 
cerebellum and basal ganglia is important from the 
perspective of neurodegenerative diseases associated 
with aging and the decline in both motor and cogni-
tive functions. References in the literature regarding 
brain aging have so far mainly referred to the cerebral 
cortex. Establishing the role of connections between 
structures that play a crucial role in motor behaviours 
and affect higher-order mental functions [45, 96, 97], 
as well as the connections of these structures with 
motor, prefrontal, and associative cortex [43, 45, 79, 
109], is important for a better understanding of the 
pathomechanisms of diseases such as Parkinson’s 
disease [81, 120] or Huntington’s disease [38, 86]. In 
the case of these diseases, both structural and func-
tional changes in the cerebellum have been noted.
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Functional neuroimaging studies — what about 
the cerebellum and its topography?

The lack of direct monosynaptic connections be-
tween the cerebral cortex and the cerebellum poses a 
significant challenge in studying the organisation of 
the brain-cerebellar network [100]. Centripetal con-
nections pass through the pons, and centrifugal con-
nections lead from the deep cerebellar nuclei through 
the thalamus [90]. Brain-cerebellar connections can-
not be studied using monosynaptic retrograde trac-
ing. A breakthrough was the use of polysynaptic 
tracing in nonhuman primates, which revealed the 
fundamental nature of brain-cerebellar connections 
[53]. The authors described separate brain-cerebellar 
connections for motor and non-motor functions.

We now know that the spatial organisation of 
motor and nonmotor function representations with-
in the cerebellum is based on polysynaptic connec-
tions between the cerebellum and other brain areas. 
Radiological studies based on functional magnetic 
resonance imaging (fMRI) techniques indicate the 
existence of a functional division of the cerebellum. 
MRI provides a comprehensive view of brain struc-
tures, including the entire brain, and importantly, 
its sensitivity and specificity allow for the study of 
polysynaptic connections, making them the basis of 
today’s cerebellar functional research. fMRI studies 
in healthy individuals indicate cerebellar activation 
during a wide range of activities, from simple mo-
tor tasks to higher-order cognitive tasks. Patterns of 
this activation vary for sensorimotor, affective, and 
cognitive tasks. These findings are confirmed by elec-
trophysiological experiments and pathway analysis 
in animal models [53]. Understanding the functional 
topography is crucial for understanding and interpret-
ing clinical data in the case of cerebellar diseases or 
injuries. This allows for an understanding of the role 
of the cerebellum in both motor and higher-order 
mental functions [96].

Available research findings in healthy individuals 
indicate that half of the cerebellar cortex is involved in 
cognitive processes. Non-motor functions have their 
representation in the posterior lobe of the cerebellum, 
which includes lobules VI–IX. There is evidence of 
functionally diverse regions within each lobule, which 
are associated with distinct functional networks, in 
various ways supporting affective or cognitive pro-
cessing [93]. A hypothesis has been put forward 
about the involvement of the posterior lobe of the 
cerebellum in intrinsic connectivity networks involved 

in higher-order mental functions [43]. According to 
the results of these studies, the neocerebellum par-
ticipates in 1) executive control networks, 2) the sa-
lience network, and 3) the default-mode network 
[43]. Imaging studies also describe the existence of  
a functional network between lobules VIIB, VIII, and IX 
of the cerebellum and the amygdala [12, 42, 57, 88, 
96]. Activation of the neocerebellum in healthy adults 
depends on the nature of the task being performed 
[96]: emotional processing activated lobules VI, VIIA, 
and crus I, executive functions activated VI, VII crus I,  
and crus II, and working memory was associated 
with the activation of lobules CI, VII, and VIIIA. Social 
cognitive tasks activated lobules IX and crus I [107]. 
Interestingly, in the case of motor tasks that required 
action planning, lobules VI and VII were sometimes 
activated in addition to anterior lobe activation [89].

The cerebellum and depression

A better and more precise understanding of the 
cerebellum’s involvement in non-motor functions 
develops our knowledge of the neurobiology of 
emotions. Cerebellar damage has caused patients to 
experience impairments in higher mental and exec-
utive functions [100], as well as emotional disorders 
[1]. Conversely, any cerebellar dysfunction is directly 
associated with emotional impairment, as observed 
in anxiety [69], post-traumatic stress disorder [68], 
schizophrenia [19, 35, 70], autism [63], as well as with 
emotional and cognitive disorders collectively referred 
to as cerebellar cognitive-affective syndrome [49, 58, 
91]. Increasingly, data indicate the involvement of the 
cerebellum in depression [6, 12, 23]. Many clinical 
studies point to the coexistence of depression with 
cerebellar diseases [23, 24, 62].

Cerebellar structural and functional abnormalities 
in depression

Depression is defined as “cortico-limbic dysreg-
ulation”: a disruption of connections between the 
dorsal cognitive control system and the ventral emo-
tional system [65]. Altered responses have also been 
noted in the cerebellum [36]. Studies in patients 
with depression indicate abnormal cerebellar-brain 
couplings in affective-limbic and cognitive networks. 
Cerebellar areas including crus I, crus II, and lobule 
VIIa showed significantly decreased connectivity with 
the ventromedial prefrontal cortex [2, 61], as well as 
with the dorsolateral prefrontal cortex [2, 61], areas 
implicated in cognitive functions. A strong correlation 
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between connections and symptom severity indicates 
the significant role of the cerebellum in both affec-
tive and cognitive dysfunction in depression. Habas 
[43] points to the involvement of the cerebellum in 
2 major neuronal networks involved in depression: 
the salience network and the default mode network. 
He also suggests a modulating role of lobule VI in the 
salience network. In support of the affective role of 
the cerebellum, the network connecting the amyg-
dala and neocerebellum is mentioned here as well. 
Abnormalities in posterior cerebellar activity, such as 
significantly reduced cerebello-cerebral functional 
connectivity, have been observed in patients with 
severe depressive disorders [2, 41, 61]. Structural 
studies of non-motor cerebellar areas in patients with 
depression [12, 27, 28, 67, 71] have shown significant 
differences in the volume of these areas compared 
to the volume in patients in remission and healthy 
individuals. Cerebellar volume was strongly associated 
with the severity and duration of the disease. The 
relationship between the volume of lobule VI and 
symptom severity is particularly emphasised [12]. 
Interestingly, in cerebellar areas involved in higher 
mental functions, increased blood flow has been 
noted in cases of depressive disorders [30].

What about stress?

Stress and depression may rely on similar mecha-
nisms of neuronal plasticity disruption. Stress leads to 
physical and behavioural impairment, and stress-relat-
ed diseases and mental disorders can be disabling and 
life-threatening. The consequences of stress include 
not only cardiovascular, autoimmune, or metabolic 
diseases but also anxiety disorders, mood disorders, 
depression, or post-traumatic stress disorder. The 
contribution of the cerebellum to higher mental 
functions is no longer subject to debate; it is known 
to have connections with brain structures also asso-
ciated with stress. Studies indicate changes in the 
cerebellum, both morphological and functional, due 
to stress. Individuals who experienced events such as 
maltreatment and sexual abuse in childhood showed 
volumetric changes in the cerebellum [3, 60, 108, 
115]. Here, as in the case of depression, studies have 
shown increased blood flow [3]. In individuals who 
developed obsessive-compulsive disorder as a result 
of stressful events, significant differences were ob-
served in the cerebellum, with an increase in volume 
compared to a control group of healthy individuals. 
[14, 80]. Patients with post-traumatic stress disorder 

showed reduced volume of the posterior cerebellar 
lobe [8, 16, 20, 101]. Neuroimaging studies conduct-
ed on individuals who experienced episodes of major 
depression showed reduced functional connectivity 
[32, 34, 59, 73, 105]. In individuals with post-traumat-
ic stress disorder, numerous reports describe reduced 
functional connectivity of the posterior cerebellar 
lobe [18, 21, 33, 44, 46, 50, 69]. Interestingly, in 
individuals who experienced chronic work-related 
stress leading to burnout, changes in functional con-
nectivity between the cerebellum and the amygdala 
were observed [39].

The cerebellum and neurodegenerative diseases

In addition to its involvement in many physio-
logical brain functions, the cerebellum is also impli-
cated in pathological processes, including disorders 
of higher nervous functions. A detailed delineation 
of the cerebellum’s functions as a whole, as well as 
further divisions, can be used to better understand 
its structural changes and to diagnose and monitor 
the development of many diseases. For example, 
patients with Alzheimer’s disease showed decreased 
volumes of posterior cerebellar lobes [94, 103]. Dif-
ferences were also noted in patients with multiple 
sclerosis [55], Huntington’s disease [82, 86], and 
Parkinson’s disease [10, 113]. However, many pub-
lications provide ambiguous results regarding the 
role of the cerebellum in various neurodegenerative 
disorders regarding cognitive functions. This can be 
explained by the fact that accurate segmentation of 
the cerebellum is quite difficult due to its complex 
structure [84].

At the end — chemical messengers

The cerebellum plays a significant role in both 
motor and non-motor functions through a complex 
interaction of neurotransmitters. Dopamine, seroto-
nin, norepinephrine, and acetylcholine act as neuro-
modulators influencing cerebellar functions such as 
motor coordination, cognition, and emotion. Studies 
indicate that serotonin levels in the cerebellum affect 
mood regulation, memory, and learning [106]. Dopa-
minergic projections to the cerebellum are involved 
in decision-making and reward-based learning [25]. 
Dopamine receptors located in the cerebellum influ-
ence cognitive flexibility and executive functions, with 
receptor-level changes affecting social behaviours 
[25]. Norepinephrine impacts focus and the effective 
processing of sensory information, influencing the 



504

Folia Morphol., 2024, Vol. 83, No. 3

cerebellum’s role in cognitive functions under stress, 
emotion regulation, and decision-making [9, 95]. Sim-
ilarly, acetylcholine affects cerebellar functions related 
to learning and attention maintenance. Cholinergic 
signals in the cerebellum influence the accuracy and 
efficiency of cognitive tasks requiring sustained atten-
tion and play a role in encoding new information and 
memory consolidation processes [118]. Dysregulation 
of these chemical messengers has been implicated 
in various neurological and psychiatric disorders, 
including depression and stress-related conditions. 
Understanding the roles of these chemical messen-
gers in cerebellar function and dysfunction is critical 
for developing targeted therapeutic interventions for 
such disorders.

CONCLUSIONS
The cerebellum, previously considered solely  

a motor structure, plays a key role in non-motor 
functions such as cognitive and emotional processes. 
Because the cerebellum has extensive connections 
with the cerebral cortex, limbic system, and basal 
ganglia, it can directly influence emotions, motiva-
tion, and cognitive functions. Neuroimaging stud-
ies provide evidence of the functional organisation 
of the cerebellum. Activation of the cerebellum has 
been observed during both simple motor tasks and 
complex cognitive tasks. Today, it is known that the 
symptoms of many neurological diseases have unique 
associations with different areas of the cerebellum. 
The posterior lobe of the cerebellum is particularly 
significant in the context of cognitive and neuro-
degenerative disorders. Damage to the cerebellum 
can lead to emotional and cognitive disturbances, 
such as Schmahmann’s syndrome. Changes in the 
volume and functionality of the cerebellum are ob-
served in cases of depression, autism, PTSD, and 
other mental disorders. Neurotransmitters also play 
an important role in regulating cerebellar functions, 
affecting cognitive processes, motor coordination, 
and emotional regulation. Better understanding the 
role of the cerebellum in non-motor functions opens 
new therapeutic possibilities, especially in treating 
neurodegenerative diseases, emotional disorders, and 
cognitive impairments.
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