English Polski
Tom 16, Nr 3 (2021)
Artykuł przeglądowy
Opublikowany online: 2021-04-22

dostęp otwarty

Wyświetlenia strony 1099
Wyświetlenia/pobrania artykułu 515
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Czego dowiedzieliśmy się o COVID-19 w 2020 roku? 10 hipotez wyjaśniających różnice w zachorowalności i śmiertelności z powodu COVID-19 między krajami

Jan Jurgiel1, Tomasz Dzieciątkowski2, Łukasz Szarpak3, Krzysztof J. Filipiak4
Folia Cardiologica 2021;16(3):168-176.

Streszczenie

Pandemia choroby koronawirusowej 2019 jest jednym z najtrudniejszych wyzwań dla współczesnej medycyny i systemów ochrony zdrowia. Od początku jej wybuchu w różnych częściach świata zaobserwowano różnice w zapadalności i śmiertelności. W artykule omówione zostało 10 hipotez, które były tematem dyskusji naukowych i mogą wyjaśniać tę obserwację. Czynniki kulturowe, demograficzne oraz socjologiczne, różnice w systemach opieki zdrowotnej i harmonogramach szczepień, polimorfizm genetyczny mogą stanowić zmienne wpływające na przebieg pandemii w różnych regionach świata. Dalsze badanie tych hipotez może dostarczyć cennych informacji i poszerzyć dostępną wiedzę w tej bezprecedensowej sytuacji epidemiologicznej.

Artykuł dostępny w formacie PDF

Pokaż PDF (angielski) Pobierz plik PDF

Referencje

  1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506.
  2. WHO Coronavirus disease 2019 (COVID-19) Situation Report — 52. World Health Organization, Geneva 2020.
  3. Weekly epidemiological update — 22 December 2020. https://www.who.int/publications/m/item/weekly-epidemiological-update---22-december-2020 (December 28, 2020).
  4. Dzieciątkowski T, Filipiak KJ. ed. Koronawirus SARS-CoV-2. Zagrożenie dla współczesnego świata [Coronavirus SARS-CoV-2. A threat to the modern world] [Polish]. PZWL, Warszawa 2020.
  5. Dowd JB, Andriano L, Brazel DM, et al. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc Natl Acad Sci USA. 2020; 117(18): 9696–9698.
  6. Rod JE, Oviedo-Trespalacios O, Cortes-Ramirez J. A brief-review of the risk factors for covid-19 severity. Rev Saude Publica. 2020; 54: 60.
  7. Velamoor V, Persad E. Covid-19: Cultural perspectives. Asian J Psychiatr. 2020; 53: 102439.
  8. Bavel JJ, Baicker K, Boggio PS, et al. Using social and behavioural science to support COVID-19 pandemic response. Nat Hum Behav. 2020; 4(5): 460–471.
  9. Luciano M, Sampogna G, del Vecchio V, et al. The family in Italy: cultural changes and implications for treatment. Int Rev Psychiatry. 2012; 24(2): 149–156.
  10. Pachetti M, Marini B, Giudici F, et al. Impact of lockdown on Covid-19 case fatality rate and viral mutations spread in 7 countries in Europe and North America. J Transl Med. 2020; 18(1): 338.
  11. Leffler CT, Ing E, Lykins JD, et al. Association of country-wide coronavirus mortality with demographics, testing, lockdowns, and public wearing of masks. Am J Trop Med Hyg. 2020; 103(6): 2400–2411.
  12. Lau H, Khosrawipour V, Kocbach P, et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J Travel Med. 2020; 27(3).
  13. Grabowski J, Witkowska N, Bidzan L. Letter to the editor: excess all-cause mortality during second wave of COVID-19 — the Polish perspective. Euro Surveill. 2021; 26(7).
  14. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020; 20(5): 533–534.
  15. Health Data. Liczba wydanych kart DiLO. [Number of diagnostic and treatment oncological cards issued]. Warsaw: Narodowy Fundusz Zdrowia [Polish]. https://zdrowedane.nfz.gov.pl/course/view.php?id=98 (February 17, 2021).
  16. Wielkopolski Oddział Wojewódzki NFZ w Poznaniu : Mniej zawałów w Wielkopolsce w 2020 r. Z czego wynika spadek? [Less heart attacks in Greater Poland in 2020. What is the reason for the decrease?] Poznań: Zespół Komunikacji Społecznej WOW NFZ [Polish]. http://nfz-poznan.pl/page.php/1/0/show/16141/ (February 17, 2021).
  17. Słowik A, Nowak R, Popiela T. Significant fall in stroke admissions in the Malopolska Voivodeship of Poland during the COVID-19 pandemic. Neurol Neurochir Pol. 2020; 54(5): 471–472.
  18. Gobbi S, Płomecka MB, Ashraf Z, et al. Worsening of preexisting psychiatric conditions during the COVID-19 pandemic. Front Psychiatry. 2020; 11: 581426.
  19. Holmager TLf, Lynge E, Kann CE, et al. Geography of COVID-19 in Denmark. Scand J Public Health. 2021; 49(1): 88–95.
  20. Li Y, Leung GM, Tang JW, et al. Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review. Indoor Air. 2007; 17(1): 2–18.
  21. Comunian S, Dongo D, Milani C, et al. Air pollution and Covid-19: the role of particulate matter in the spread and increase of Covid-19's morbidity and mortality. Int J Environ Res Public Health. 2020; 17(12).
  22. Chen S, Yang J, Yang W, et al. COVID-19 control in China during mass population movements at New Year. Lancet. 2020; 395(10226): 764–766.
  23. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. https://coronavirus.jhu.edu/map.html (February 17, 2021).
  24. Wise J. Covid-19: New coronavirus variant is identified in UK. BMJ. 2020; 371: m4857.
  25. Hatami N, Ahi S, Sadeghinikoo A, et al. Worldwide ACE (I/D) polymorphism may affect COVID-19 recovery rate: an ecological meta-regression. Endocrine. 2020; 68(3): 479–484.
  26. Strafella C, Caputo V, Termine A, et al. Analysis of genetic variability among populations highlights a possible link with COVID-19-related neurological complications. Genes (Basel). 2020; 11(7).
  27. Zheng H, Cao JJ. Angiotensin-converting enzyme gene polymorphism and severe lung injury in patients with coronavirus disease 2019. Am J Pathol. 2020; 190(10): 2013–2017.
  28. Maiti AK. The African-American population with a low allele frequency of SNP rs1990760 (T allele) in IFIH1 predicts less IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics. 2020; 72(6-7): 387–391.
  29. Thunders M, Delahunt B. Gene of the month: TMPRSS2 (transmembrane serine protease 2). J Clin Pathol. 2020; 73(12): 773–776.
  30. Barchetta I, Cavallo MG, Baroni MG. COVID-19 and diabetes: Is this association driven by the DPP4 receptor? Potential clinical and therapeutic implications. Diabetes Res Clin Pract. 2020; 163: 108165.
  31. Saadat M. An evidence for correlation between the glutathione S-transferase T1 (GSTT1) polymorphism and outcome of COVID-19. Clin Chim Acta. 2020; 508: 213–216.
  32. Nikoloudis D, Kountouras D, Hiona A. The frequency of combined IFITM3 haplotype involving the reference alleles of both rs12252 and rs34481144 is in line with COVID-19 standardized mortality ratio of ethnic groups in England. PeerJ. 2020; 8: e10402.
  33. Ellinghaus D, Degenhardt F, Bujanda L, et al. Severe Covid-19 GWAS Group. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020; 383(16): 1522–1534.
  34. Hauer J, Fischer U, Auer F, et al. Regional BCG vaccination policy in former East- and West Germany may impact on both severity of SARS-CoV-2 and incidence of childhood leukemia. Leukemia. 2020; 34(8): 2217–2219.
  35. Dolgikh S. Further evidence of a possible correlation between the severity of Covid-19 and BCG immunization. J Infect Dis Epidemiol. 2020; 6: 120.
  36. Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine (BCG-CORONA). https://clinicaltrials.gov/ct2/show/NCT04328441 (October 3, 2020).
  37. BCG Vaccination to Protect Healthcare Workers Against COVID-19 (BRACE). https://clinicaltrials.gov/ct2/show/NCT04327206 (October 3, 2020).
  38. Fidel PL, Noverr MC. Could an unrelated live attenuated vaccine serve as a preventive measure to dampen septic inflammation associated with COVID-19 infection? mBio. 2020; 11(3).
  39. Sidiq KR, Sabir DK, Ali SM, et al. Does early childhood vaccination protect against COVID-19? Front Mol Biosci. 2020; 7: 120.
  40. Jurgiel J, Filipiak KJ, Szarpak Ł, et al. Do pets protect their owners in the COVID-19 era? Med Hypotheses. 2020; 142: 109831.
  41. Salajegheh Tazerji S, Magalhães Duarte P, Rahimi P, et al. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to animals: an updated review. J Transl Med. 2020; 18(1): 358.
  42. Enserink M. Coronavirus rips through Dutch mink farms, triggering culls. Science. 2020; 368(6496): 1169.
  43. Pansini R, Fornacca D. Initial evidence of higher morbidity and mortality due to SARS-CoV-2 in regions with lower air quality. medRxiv. 2020; 1.
  44. Pansini R, Fornacca D. Higher virulence of COVID-19 in the air-polluted regions of eight severely affected countries. medRxiv. 2020; 1.
  45. Conticini E, Frediani B, Caro D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut. 2020; 261: 114465.
  46. Fattorini D, Regoli F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ Pollut. 2020; 264: 114732.
  47. Mantecca P, Gualtieri M, Longhin E, et al. Adverse biological effects of Milan urban PM looking for suitable molecular markers of exposure. Chemical Industry and Chemical Engineering Quarterly. 2012; 18(4-2): 635–641.
  48. Ciencewicki J, Jaspers I. Air pollution and respiratory viral infection. Inhal Toxicol. 2007; 19(14): 1135–1146.
  49. Zerboni A, Bengalli R, Baeri G, et al. Mixture effects of diesel exhaust and metal oxide nanoparticles in human lung A549 cells. Nanomaterials (Basel). 2019; 9(9).
  50. Bengalli R, Zerboni A, Marchetti S, et al. In vitro pulmonary and vascular effects induced by different diesel exhaust particles. Toxicol Lett. 2019; 306: 13–24.
  51. Kaan PM, Hegele RG. Interaction between respiratory syncytial virus and particulate matter in guinea pig alveolar macrophages. Am J Respir Cell Mol Biol. 2003; 28(6): 697–704.
  52. Is the New Coronavirus Getting Weaker? What to Know. https://www.healthline.com/health-news/is-the-new-coronavirus-getting-weaker-what-to-know (October 3, 2020).
  53. Doremalen Nv, Bushmaker T, Morris D, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020; 382(16): 1564–1567.
  54. Heilingloh CS, Aufderhorst UW, Schipper L, et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am J Infect Control. 2020; 48(10): 1273–1275.