English Polski
Tom 16, Nr 1 (2021)
Artykuł przeglądowy
Opublikowany online: 2021-02-27

dostęp otwarty

Wyświetlenia strony 426
Wyświetlenia/pobrania artykułu 545
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Dlaczego załamek P powinien być dokładnie mierzony?

Jacek Marcin Zawadzki1, Grzegorz Zawadzki2, Jadwiga Radziejewska3, Jacek Jerzy Gajek4
Folia Cardiologica 2021;16(1):23-29.

Streszczenie

The electrophysiological activity of the heart is recorded and presented in form of ECG. In 1998 the concept of the P wave dispersion as the risk factor for AF recurrence was introduced. The aim of our review is to prove the P wave dispersion is an artifact of low accuracy in P wave measurement, basing on the overview of the publications and the own research in this field. By comparing and contrasting various publications on this topic, we observed that it was the imprecise measurement method that resulted in different durations of all P wave parameters in contrast with the precise measurements. It was indicated that the value of the imprecise P wave dispersion correlated highly with the maximal P wave duration measured in the similar way. In contrast with the imprecise measurement method the minimal and the maximal durations of the P waves, measured accurately, were almost identical. The studies and the methodological considerations indicate that the P wave dispersion is a derivative of the imprecise measurement of the ECG recording, inconsistent with the physics rules describing the flow of electric current. The results confirm our observation that the precise measurement of the P wave makes the phenomenon of dispersion no longer exists. Unfortunately, only a few researchers dare to question the phenomenon of the P wave dispersion. The discussion should continue, because the P-wave parameters are the data of great importance, as they reflect the dimensions of the atria, electrical conductivity and the condition of the muscle.

Artykuł dostępny w formacie PDF

Pokaż PDF (angielski) Pobierz plik PDF

Referencje

  1. Becker DE. Fundamentals of electrocardiography interpretation. Anesth Prog. 2006; 53(2): 53–64.
  2. Murthy IS, Prasad GS. Analysis of ECG from pole-zero models. IEEE Trans Biomed Eng. 1992; 39(7): 741–751.
  3. Bayés de Luna A. Basic electrocardiography: normal and abnormal ECG patterns. 1st edition. Blackwell Futura, Oxford 2008.
  4. Grant RP. Spatial vector electrocardiography; a method for calculating the spatial electrical vectors of the heart from conventional leads. Circulation. 1950; 2(5): 676–695.
  5. Wang K, Xiao HB, Fujimoto S, et al. Atrial electromechanical sequence in normal subjects and patients with DDD pacemakers. Br Heart J. 1995; 74(4): 403–407.
  6. Buck S, Rienstra M, Maass AH, et al. Cardiac resynchronization therapy in patients with heart failure and atrial fibrillation: importance of new-onset atrial fibrillation and total atrial conduction time. Europace. 2008; 10(5): 558–565.
  7. Magnani JW, Gorodeski EZ, Johnson VM, et al. P wave duration is associated with cardiovascular and all-cause mortality outcomes: the National Health and Nutrition Examination Survey. Heart Rhythm. 2011; 8(1): 93–100.
  8. Gorenek B, Birdane A, Kudaiberdieva G, et al. P wave amplitude and duration may predict immediate recurrence of atrial fibrillation after internal cardioversion. Ann Noninvasive Electrocardiol. 2003; 8(3): 215–218.
  9. Milutinović S, Apostolović S, Tasić I. [Left atrial size in patients with arterial hypertension] [Article in Serbian]. Srp Arh Celok Lek. 2006; 134(3-4): 100–105.
  10. Gilbert EF. The effects of metabolic diseases on the cardiovascular system. Am J Cardiovasc Pathol. 1987; 1(2): 189–213.
  11. Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005; 26(5): 704–728.
  12. Escobar-Robledo LA, Bayés-de-Luna A, Lupón J, et al. Advanced interatrial block predicts new-onset atrial fibrillation and ischemic stroke in patients with heart failure: The "Bayes' Syndrome-HF" study. Int J Cardiol. 2018; 271: 174–180.
  13. Schreiber T, Kähler N, Tscholl V, et al. Correlation of P-wave properties with the size of left atrial low voltage areas in patients with atrial fibrillation. J Electrocardiol. 2019; 56: 38–42.
  14. Eranti A, Carlson J, Kenttä T, et al. Orthogonal P-wave morphology, conventional P-wave indices, and the risk of atrial fibrillation in the general population using data from the Finnish Hospital Discharge Register. Europace. 2020; 22(8): 1173–1181.
  15. Dilaveris PE, Gialafos EJ, Sideris SK, et al. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J. 1998; 135(5 Pt 1): 733–738.
  16. Dilaveris P, Tousoulis D. P-wave dispersion measurement: methodological considerations. Indian Pacing Electrophysiol J. 2017; 17(3): 89.
  17. Dogan A, Kahraman H, Ozturk M, et al. P wave dispersion and left atrial appendage function for predicting recurrence after conversion of atrial fibrillation and relation of p wave dispersion to appendage function. Echocardiography. 2004; 21(6): 523–530.
  18. Salah A, Zhou S, Liu Q, et al. P wave indices to predict atrial fibrillation recurrences post pulmonary vein isolation. Arq Bras Cardiol. 2013; 101(6): 519–527.
  19. Kollu K, Altintepe L, Duran C, et al. The assessment of P-wave dispersion and myocardial repolarization parameters in patients with chronic kidney disease. Ren Fail. 2018; 40(1): 1–7.
  20. Yılmaz M, Altın C, Tekin A, et al. Assessment of atrial fibrillation and ventricular arrhythmia risk after transplant in patients with end-stage renal disease by P-wave/QT interval dispersion, T-wave peak-end interval, and T-wave peak-end/QT interval ratio. Exp Clin Transplant. 2018.
  21. Huang JC, Wei SY, Chen SC, et al. P wave dispersion and maximum P wave duration are associated with renal outcomes in chronic kidney disease. PLoS One. 2014; 9(7): e101962.
  22. Abdellah AT, El-Nagary M. Prevalence of P wave dispersion and interatrial block in patients with systolic heart failure and their relationship with functional status, hospitalization and one year mortality. Egypt Heart J. 2018; 70(3): 181–187.
  23. Yamada T, Fukunami M, Shimonagata T, et al. Dispersion of signal-averaged P wave duration on precordial body surface in patients with paroxysmal atrial fibrillation. Eur Heart J. 1999; 20(3): 211–220.
  24. Rosiak M, Bolinska H, Ruta J. P wave dispersion and P wave duration on SAECG in predicting atrial fibrillation in patients with acute myocardial infarction. Ann Noninvasive Electrocardiol. 2002; 7(4): 363–368.
  25. Akcay M. The effect of moderate altitude on Tp-e interval, Tp-e/QT, QT, cQT and P-wave dispersion. J Electrocardiol. 2018; 51(6): 929–933.
  26. Zimmer K, Przywara W, Gajek J, et al. The nature of P-wave dispersion — a clinically useful parameter that does not exist. Europace Abstr Suppl. 2015; 17(3).
  27. Zawadzki JM, Zimmer K, Przywara W, et al. The true nature of P wave dispersion. Adv Clin Exp Med. 2020; 29(12): 1443–1447.
  28. Zawadzki J, Mercik J, Marecka A, et al. P wave dispersion — fading light of a popular parameter. Eur Heart J. 2020; 41(Suppl_2): 3449.
  29. Chávez-González E, Donoiu I. Utility of P-wave dispersion in the prediction of atrial fibrillation. Curr Health Sci J. 2017; 43(1): 5–11.