English Polski
Tom 14, Nr 4 (2019)
Artykuł przeglądowy
Opublikowany online: 2019-09-06

dostęp otwarty

Wyświetlenia strony 502
Wyświetlenia/pobrania artykułu 3237
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Rola diagnostyki kardiologicznej u pacjentów z udarem kryptogennym — aktualny stan wiedzy

Elwira Bakuła-Ostalska1, Janusz Bednarski1
DOI: 10.5603/FC.2019.0093
Folia Cardiologica 2019;14(4):349-355.

Streszczenie

Udar kryptogenny to udar mózgu o nieznanej etiologii. Ponad 2/3 udarów kryptogennych ma podłoże zatorowe, głównie kardiogenne.

Dlatego tak ważne są obrazowa diagnostyka kardiologiczna oraz diagnostyka zaburzeń rytmu serca, zwłaszcza migotania przedsionków. U osób z implantowanymi urządzeniami wszczepialnymi należy rutynowo wykorzystywać zapisy wewnątrzsercowego elektrokardiogramu w pamięci urządzenia, w poszukiwaniu tak zwanych szybkich rytmów przedsionkowych. Udoskonalenie narzędzi diagnostycznych oraz postępy w wykrywaniu migotania przedsionków sprawiają, że coraz mniej udarów mózgu pozostaje bez ustalonej przyczyny, co w wielu przypadkach pozwala na odpowiednio wczesne wdrożenie profilaktyki wtórnej.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. O'Donnell MJ, Xavier D, Liu L, et al. INTERSTROKE investigators. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010; 376(9735): 112–123.
  2. Ay H, Furie KL, Singhal A, et al. An evidence-based causative classification system for acute ischemic stroke. Ann Neurol. 2005; 58(5): 688–697.
  3. Kolominsky-Rabas P, Weber M, Gefeller O, et al. Epidemiology of Ischemic Stroke Subtypes According to TOAST Criteria. Stroke. 2001; 32(12): 2735–2740.
  4. Hart RG, Diener HC, Coutts SB, et al. Cryptogenic Stroke/ESUS International Working Group. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014; 13(4): 429–438.
  5. Arboix A, Alio J, Arboix A, et al. Cardioembolic stroke: clinical features, specific cardiac disorders and prognosis. Curr Cardiol Rev. 2010; 6(3): 150–161.
  6. Hart RG, Diener HC, Coutts SB, et al. Cryptogenic Stroke/ESUS International Working Group. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014; 13(4): 429–438.
  7. January C, Wann L, Alpert J, et al. 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: Executive Summary. Circulation. 2014; 130(23): 2071–2104.
  8. Sposato LA, Cipriano LE, Saposnik G, et al. Diagnosis of atrial fibrillation after stroke and transient ischemic attack: a systematic review and meta-analysis. Lancet Neurol. 2015; 14(4): 377–387.
  9. Powers WJ, Rabinstein AA, Ackerson T T, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018; 49((3): e46–e110.
  10. Kamel H, Hunter M, Moon Y, et al. Electrocardiographic Left Atrial Abnormality and Risk of Stroke. Stroke. 2015; 46(11): 3208–3212.
  11. Kamel H, Okin PM, Longstreth WT, et al. Atrial cardiopathy: a broadened concept of left atrial thromboembolism beyond atrial fibrillation. Future Cardiol. 2015; 11(3): 323–331.
  12. Dussault C, Toeg H, Nathan M, et al. Electrocardiographic monitoring for detecting atrial fibrillation after ischemic stroke or transient ischemic attack: systematic review and meta-analysis. Circ Arrhythm Electrophysiol. 2015; 8(2): 263–269.
  13. Ricci B, Chang AD, Hemendinger M, et al. A Simple Score That Predicts Paroxysmal Atrial Fibrillation on Outpatient Cardiac Monitoring after Embolic Stroke of Unknown Source. J Stroke Cerebrovasc Dis. 2018; 27(6): 1692–1696.
  14. Montalvo M, Tadi P, Merkler A, et al. PR Interval Prolongation and Cryptogenic Stroke: A Multicenter Retrospective Study. J Stroke Cerebrovasc Dis. 2017; 26(10): 2416–2420.
  15. Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009; 373(9665): 739–745.
  16. Lau JK, Lowres N, Neubeck L, et al. iPhone ECG application for community screening to detect silent atrial fibrillation: a novel technology to prevent stroke. Int J Cardiol. 2013; 165(1): 193–194.
  17. Sanna T, Diener HC, Passman R, et al. Cryptogenic Stroke and Underlying Atrial Fibrillation. New England Journal of Medicine. 2014; 370(26): 2478–2486.
  18. Healey JS, Connolly SJ, Gold MR, et al. ASSERT Investigators. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012; 366(2): 120–129.
  19. Erküner Ö, Rienstra M, Van Gelder IC, et al. Stroke risk in patients with device-detected atrial high-rate episodes. Neth Heart J. 2018; 26(4): 177–181.
  20. Van Gelder IC, Healey JS, Crijns HJ, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J. 2017; 38(17): 1339–1344.
  21. William JP, Kent DM, Bulsara KR, et al. American Heart Association Stroke Council. Effect of dysphagia screening strategies on clinical outcomes after stroke: a systematic review for the 2018 Guidelines for the early management of patients with acute ischemic stroke. Stroke. 2018; 49(3): e123–e128.
  22. McGrath ER, Paikin JS, Motlagh B, et al. Transesophageal echocardiography in patients with cryptogenic ischemic stroke: a systematic review. Am Heart J. 2014; 168(5): 706–712.
  23. Longobardo L, Zito C, Carerj S, et al. Role of Echocardiography in Assessment of Cardioembolic Sources: a Strong Diagnostic Resource in Patients with Ischemic Stroke. Curr Cardiol Rep. 2018; 20(12): 136.
  24. Hilberath JN, Oakes DA, Shernan SK, et al. Safety of transesophageal echocardiography. J Am Soc Echocardiogr. 2010; 23(11): 1115–27; quiz 1220.
  25. Mattle HP, Meier B, Nedeltchev K. Prevention of stroke in patients with patent foramen ovale. Int J Stroke. 2010; 5(2): 92–102.
  26. Cotter PE, Martin PJ, Belham M. Patent foramen ovale are more common than previously thought in young patients with strokes. Cerebrovasc Dis. 2010; 29(Suppl. 2): 609.
  27. Monte I, Grasso S, Licciardi S, et al. Head-to-head comparison of real-time three-dimensional transthoracic echocardiography with transthoracic and transesophageal two-dimensional contrast echocardiography for the detection of patent foramen ovale. Eur J Echocardiogr. 2010; 11(3): 245–249.
  28. Fan S, Nagai T, Luo H, et al. Superiority of the combination of blood and agitated saline for routine contrast enhancement. J Am Soc Echocardiogr. 1999; 12(2): 94–98.
  29. Schuchlenz HW, Weihs W, Horner S, et al. The association between the diameter of a patent foramen ovale and the risk of embolic cerebrovascular events. Am J Med. 2000; 109(6): 456–462.
  30. Messé SR, Silverman IE, Kizer JR, et al. Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: recurrent stroke with patent foramen ovale and atrial septal aneurysm: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2004; 62(7): 1042–1050.
  31. Prefasi D, Martínez-Sánchez P, Fuentes B, et al. The utility of the RoPE score in cryptogenic stroke patients ≤50 years in predicting a stroke-related patent foramen ovale. Int J Stroke. 2016; 11(1): NP7–NP8.
  32. Kent DM, Ruthazer R, Weimar C, et al. An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke. Neurology. 2013; 81(7): 619–625.
  33. Lima J, Desai M. Cardiovascular magnetic resonance imaging: Current and emerging applications. Journal of the American College of Cardiology. 2004; 44(6): 1164–1171.
  34. Baher A, Mowla A, Kodali S, et al. Cardiac MRI improves identification of etiology of acute ischemic stroke. Cerebrovasc Dis. 2014; 37(4): 277–284.
  35. Światkiewicz I. „Zastosowanie echokardiografii w diagnostyce i terapii zatorowości sercowopochodnej –wybrane aspekty w świetle zaleceń Europejskiego Towarzystwa Echokardiograficznego”. Folia Cardiologica Excerpta. 2010; 5(6): 339–52.