English Polski
Tom 13, Nr 2 (2018)
Niewydolność serca
Opublikowany online: 2018-05-30

dostęp otwarty

Wyświetlenia strony 881
Wyświetlenia/pobrania artykułu 840
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Czynnik różnicowania wzrostu 15 jako biomarker w niewydolności serca

Wiesław Piechota1, Paweł Krzesiński2
Folia Cardiologica 2018;13(2):174-180.

Streszczenie

Niewydolność serca (HF) staje się coraz częstszym rozpoznaniem ze spektrum chorób układu sercowo-naczyniowego. Częściowo jest to związane z wydłużeniem się średniego życia człowieka. Poprawiła się również diagnostyka HF, zarówno obrazowa, jak i biochemiczna — ta ostatnia dzięki wprowadzeniu rutynowych oznaczeń peptydów natriuretycznych typu B (BNP). Ze względu na poważne rokowanie (krótki czas przeżycia) nadal jednak trwają poszukiwania biomarkerów, które mogłyby mieć zastosowanie w jak najwcześniejszej diagnostyce, określeniu ciężkości HF, sposobu i efektywności (monitorowania) jej leczenia i, co nie mniej ważne, w rokowaniu. Jeden spośród kilku badanych nowych markerów — czynnik różnicowania wzrostu 15 (GDF-15) — zdaje się wykazywać względnie duży potencjał w powyższych zastosowaniach. Na czoło wybija się prognostyczna wartość tego białkowego biomarkera w odniesieniu do umieralności, niezależna od innych biomarkerów i dodatkowa w stosunku do nich. Wynika to ze złożonych procesów patofizjologicznych prowadzących do wzrostu stężenia tego markera, gdyż ekspresja GDF-15 nasila się w komórkach układu sercowo-naczyniowego (kardiomiocytach, śródbłonku) oraz innych komórkach (makrofagach, adipocytach) w odpowiedzi na bodźce patologiczne (niedokrwienie, stres oksydacyjny, zapalenie). Zwiększona ekspresja może mieć autokrynne działanie ochronne. Badania populacyjne wskazują także na możliwość zastosowania GDF-15 do wykrywania subklinicznej HF. Wartość kliniczna oznaczania GDF-15 zwiększa się w strategii wielomarkerowej, uwzględniającej zastosowanie wraz z BNP i/lub troponinami. Czynnik różnicowania wzrostu 15 może zatem odgrywać istotną rolę w biochemicznym systemie wczesnego ostrzegania o możliwości rozwoju HF oraz rokowaniu w przypadku jej wystąpienia.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Wallentin L, Zethelius B, Berglund L, et al. GDF-15 for prognostication of cardiovascular and cancer morbidity and mortality in men. PLoS One. 2013; 8(12): e78797.
  2. Wang TJ, Wollert KC, Larson MG, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation. 2012; 126(13): 1596–1604.
  3. Damman P, Kempf T, Windhausen F, et al. ICTUS investigators. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation. 2007; 115(8): 962–971.
  4. Widera C, Pencina MJ, Bobadilla M, et al. Incremental prognostic value of biomarkers beyond the GRACE (Global Registry of Acute Coronary Events) score and high-sensitivity cardiac troponin T in non-ST-elevation acute coronary syndrome. Clin Chem. 2013; 59(10): 1497–1505.
  5. Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007; 50(11): 1054–1060.
  6. George M, Jena A, Srivatsan V. GDF 15 — a novel biomarker in the offing for heart failure. Curr Cardiol Rev. 2016; 12(1): 37–46.
  7. Khan SQ, Ng K, Dhillon O, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J. 2009; 30(9): 1057–1065.
  8. Hijazi Z, Oldgren J, Lindbäck J, et al. ARISTOTLE and RE-LY Investigators. A biomarker-based risk score to predict death in patients with atrial fibrillation: the ABC (age, biomarkers, clinical history) death risk score. Eur Heart J. 2018; 39(6): 477–485.
  9. Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A. 1997; 94(21): 11514–11519.
  10. Bauskin AR, Zhang HP, Fairlie WD, et al. The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-beta superfamily member, acts as a quality control determinant for correctly folded MIC-1. EMBO J. 2000; 19(10): 2212–2220.
  11. Hsiao EC, Koniaris LG, Zimmers-Koniaris T, et al. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol Cell Biol. 2000; 20(10): 3742–3751.
  12. Kempf T, Eden M, Strelau J, et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006; 98(3): 351–360.
  13. Schlittenhardt D, Schober A, Strelau J, et al. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004; 318(2): 325–333.
  14. Wollert KC, Kempf T, Wallentin L, et al. Growth differentiation factor-15: a new biomarker in cardiovascular disease. Herz. 2009; 34(8): 594–599.
  15. Wollert KC, Kempf T, Giannitsis E, et al. An automated assay for growth differentiation factor 15. JALM. ; 2017.
  16. Wollert KC, Kempf T, Lagerqvist Bo, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation. 2007; 116(14): 1540–1548.
  17. Wollert KC, Kempf T. Growth differentiation factor 15 in heart failure: an update. Curr Heart Fail Rep. 2012; 9(4): 337–345.
  18. Ago T, Sadoshima J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ Res. 2006; 98(3): 294–297.
  19. Ponikowski P, Voors AA, Anker SD, et al. ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37(27): 2129–2200.
  20. Kempf T, Horn-Wichmann R, Brabant G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem. 2007; 53(2): 284–291.
  21. Sinning C, Kempf T, Schwarzl M, et al. Biomarkers for characterization of heart failure — distinction of heart failure with preserved and reduced ejection fraction. Int J Cardiol. 2017; 227: 272–277.
  22. Santhanakrishnan R, Chong JPC, Ng TP, et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2012; 14(12): 1338–1347.
  23. Dinh W, Füth R, Lankisch M, et al. Growth-differentiation factor-15: a novel biomarker in patients with diastolic dysfunction? Arq Bras Cardiol. 2011; 97(1): 65–75.
  24. Montoro-García S, Hernández-Romero D, Jover E, et al. Growth differentiation factor-15, a novel biomarker related with disease severity in patients with hypertrophic cardiomyopathy. Eur J Intern Med. 2012; 23(2): 169–174.
  25. Lok SI, Winkens B, Goldschmeding R, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur J Heart Fail. 2012; 14(11): 1249–1256.
  26. Cotter G, Voors AA, Prescott MF, et al. Growth differentiation factor 15 (GDF-15) in patients admitted for acute heart failure: results from the RELAX-AHF study. Eur J Heart Fail. 2015; 17(11): 1133–1143.
  27. Speidl WS, Krychtiuk K, Lenz M, et al. Growth differentiation factor-15 is associated with mortality in patients with severe acute heart failure or cardiogenic shock. J Am Coll Cardiol. 2017; 69(11): 749.
  28. Berezin AE. The growth/differentiation factor-15 in chronic heart failure: new challenge in biomarker-guided therapy? Transl Biomed. 2017; 8(1): 103.
  29. Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010; 122(14): 1387–1395.
  30. McMurray JJV, Packer M, Desai AS, et al. PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371(11): 993–1004.
  31. Jaffe AS, Apple FS, Mebazaa A, et al. Unraveling N-terminal pro-B-type natriuretic peptide: another piece to a very complex puzzle in heart failure patients. Clin Chem. 2015; 61(8): 1016–1018.
  32. Røsjø H, Dahl MB, Jørgensen M, et al. Influence of glycosylation on diagnostic and prognostic accuracy of N-terminal pro-B-type natriuretic peptide in acute dyspnea: data from the Akershus Cardiac Examination 2 Study. Clin Chem. 2015; 61(8): 1087–1097.
  33. Prescott MF, Zhang Y, Dahlke M, et al. Patent: use of serelaxin to reduce gdf-15. https://patents.google.com/patent/WO2015189790A1/en (17.12.2015).
  34. https://www escardio org/The-ESC/Press-Office/Press-releases/serelaxin-fails-to-meet-primary-endpoints-in-phase-3-relax-ahf-2-trial. Metra M, Teerlink JR. Serelaxin in acute heart failure. Heart Failure 2017 — 4th World Congress on Acute Heart Failure, 29 April 2017. (18.10.2017).
  35. Bonaca MP, Morrow DA, Braunwald E, et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2011; 31(1): 203–210.
  36. Kim JiM, Back MK, Yi HS, et al. Effect of atorvastatin on growth differentiation factor-15 in patients with type 2 diabetes mellitus and dyslipidemia. Diabetes Metab J. 2016; 40(1): 70–78.
  37. Bally M, Dendukuri N, Rich B, et al. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ. 2017; 357: j1909.
  38. Arfè A, Scotti L, Varas-Lorenzo C, et al. Safety of Non-steroidal Anti-inflammatory Drugs (SOS) Project Consortium. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ. 2016; 354: i4857.
  39. Wang X, Baek SJ, Eling TE. The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem Pharmacol. 2013; 85(5): 597–606.
  40. Kempf T, Sinning JM, Quint A, et al. Growth-differentiation factor-15 for risk stratification in patients with stable and unstable coronary heart disease: results from the AtheroGene study. Circ Cardiovasc Genet. 2009; 2(3): 286–292.
  41. Schopfer DW, Ku IA, Regan M, et al. Growth differentiation factor 15 and cardiovascular events in patients with stable ischemic heart disease (The Heart and Soul Study). Am Heart J. 2014; 167(2): 186–192.e1.
  42. Hagström E, Held C, Stewart RAH, et al. STABILITY Investigators. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease. Clin Chem. 2017; 63(1): 325–333.
  43. Nair V, Robinson-Cohen C, Smith MR, et al. Growth differentiation factor-15 and risk of CKD progression. J Am Soc Nephrol. 2017; 28(7): 2233–2240.
  44. Frankenstein L, Remppis A, Frankenstein J, et al. Variability of N-terminal probrain natriuretic peptide in stable chronic heart failure and its relation to changes in clinical variables. Clin Chem. 2009; 55(5): 923–929.
  45. Meijers WC, van der Velde AR, Muller Kobold AC, et al. Variability of biomarkers in patients with chronic heart failure and healthy controls. Eur J Heart Fail. 2017; 19(3): 357–365.