English Polski
Tom 12, Nr 3 (2017)
Kardiochirurgia
Opublikowany online: 2017-06-30

dostęp otwarty

Wyświetlenia strony 752
Wyświetlenia/pobrania artykułu 11190
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Nadciśnienie płucne w przebiegu chorób lewego serca — aktualne leczenie i kierunki rozwoju terapii

Danuta Karasek, Władysław Sinkiewicz1
Folia Cardiologica 2017;12(3):317-325.

Streszczenie

Przewlekła niewydolność serca jest schorzeniem nabierającym coraz większego znaczenia. Pomimo istotnych postępów
wyniki leczenia w tej grupie chorych są wciąż niezadowalające. Groźnym czynnikiem znacząco pogarszającym jakość
życia chorych z niewydolnością serca, zwiększającym ryzyko hospitalizacji i zgonu jest nadciśnienie płucne. Nadciśnienie
płucne związane z chorobami lewego serca (PH-LHD) wynika z zaburzeń funkcji skurczowej i rozkurczowej lewej
komory, które prowadzą do wzrostu ciśnienia napełniania lewej połowy serca. Zapoczątkowuje to wiele niekorzystnych
zmian patofizjologicznych i czynnościowych w krążeniu płucnym i w prawym sercu. Rozpoznanie i leczenie nadciśnienia
płucnego jest trudne. Na szczęście rozwój badań diagnostycznych, zharmonizowana terminologia i nowa klasyfikacja
PH-LHD pozwalają na lepszą diagnostykę i kwalifikację chorych do właściwej grupy. Kluczowe znaczenie w rozpoznaniu
nadciśnienia płucnego i odpowiedniej jego klasyfikacji ma cewnikowanie serca. Większość terapii celowanych w PH jest
przeznaczona dla osób z tętniczym nadciśnieniem płucnym, a zastosowanie tych leków w PH-LHD nie zostało dostatecznie zbadane w randomizowanych badaniach klinicznych lub wykazano wręcz szkodliwe ich działanie w tej grupie
chorych. Istnieje wyraźna potrzeba dalszych badań nad mechanizmami leżącymi u podstaw PH-LHD i nowych opcji
terapeutycznych, które pomogą stymulować rozwój nowych wytycznych leczenia tej grupy chorych.

Referencje

  1. Georgiopoulou VV, Kalogeropoulos AP, Borlaug BA, et al. Left Ventricular Dysfunction With Pulmonary Hypertension: Part 1: Epidemiology, Pathophysiology, and Definitions. Circulation: Heart Failure. 2013; 6(2): 344–354.
  2. Schmeisser A, Schroetter H, Braun-Dulleaus RC. Management of pulmonary hypertension in left heart disease. Ther Adv Cardiovasc Dis. 2013; 7(3): 131–151.
  3. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016; 37(1): 67–119.
  4. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013; 62(25 Suppl): D42–D50.
  5. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013; 1(4): 290–299.
  6. Gabbay E, Yeow W, Playford D. Pulmonary arterial hypertension is an uncommon cause of pulmonary hypertension in an unselected population: the Armadale echocardiography study. Am J Resp Crit Care Med. 2007; 175: A713.
  7. Tatebe S, Fukumoto Y, Sugimura K, et al. Clinical significance of reactive post-capillary pulmonary hypertension in patients with left heart disease. Circ J. 2012; 76(5): 1235–1244.
  8. Rosenkranz S. Pulmonary hypertension 2015: current definitions, terminology, and novel treatment options. Clin Res Cardiol. 2015; 104(3): 197–207.
  9. Vachiéry JL, Adir Y, Barberà JA, et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013; 62(25 Suppl): D100–D108.
  10. Gerges C, Gerges M, Lang MB, et al. Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in "out-of-proportion" pulmonary hypertension. Chest. 2013; 143(3): 758–766.
  11. Bursi F, McNallan SM, Redfield MM, et al. Pulmonary pressures and death in heart failure: a community study. J Am Coll Cardiol. 2012; 59(3): 222–231.
  12. Melenovsky V, Hwang SJ, Redfield MM, et al. Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circ Heart Fail. 2015; 8(2): 295–303.
  13. Chen Y, Guo H, Xu D, et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension. 2012; 59(6): 1170–1178.
  14. Rosenkranz S, Gibbs JS, Wachter R, et al. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016; 37(12): 942–954.
  15. Melenovsky V, Hwang SJ, Lin G, et al. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014; 35(48): 3452–3462.
  16. Al-Naamani N, Preston IR, Paulus JK, et al. Pulmonary Arterial Capacitance Is an Important Predictor of Mortality in Heart Failure With a Preserved Ejection Fraction. JACC Heart Fail. 2015; 3(6): 467–474.
  17. Shin JT, Semigran MJ. Heart failure and pulmonary hypertension. Heart Fail Clin. 2010; 6(2): 215–222.
  18. Thenappan T, Shah SJ, Gomberg-Maitland M, et al. Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2011; 4(3): 257–265.
  19. Ghio S, Temporelli PL, Klersy C, et al. Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail. 2013; 15(4): 408–414.
  20. Hoeper MM, Lee SH, Voswinckel R, et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol. 2006; 48(12): 2546–2552.
  21. Drazner MH, Velez-Martinez M, Ayers CR, et al. Relationship of right- to left-sided ventricular filling pressures in advanced heart failure: insights from the ESCAPE trial. Circ Heart Fail. 2013; 6(2): 264–270.
  22. Ryan JJ, Rich JD, Thiruvoipati T, et al. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012; 163(4): 589–594.
  23. LeVarge BL, Pomerantsev E, Channick RN. Reliance on end-expiratory wedge pressure leads to misclassification of pulmonary hypertension. Eur Respir J. 2014; 44(2): 425–434.
  24. Boerrigter BG, Waxman AB, Westerhof N, et al. Measuring central pulmonary pressures during exercise in COPD: how to cope with respiratory effects. Eur Respir J. 2014; 43(5): 1316–1325.
  25. Ryan JJ, Rich JD, Thiruvoipati T, et al. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012; 163(4): 589–594.
  26. Konopka M, Braksator W. Nadciśnienie płucne — postępy w diagnostyce i leczeniu. Fam Med Primary Care Rev. 2013; 15(4): 561–566.
  27. Rosenkranz S, Bonderman D, Buerke M, et al. Pulmonary hypertension due to left heart disease: updated Recommendations of the Cologne Consensus Conference 2011. Int J Cardiol. 2011; 154 Suppl 1: S34–S44.
  28. Kutty RS, Parameshwar J, Lewis C, et al. Use of centrifugal left ventricular assist device as a bridge to candidacy in severe heart failure with secondary pulmonary hypertension. Eur J Cardiothorac Surg. 2013; 43(6): 1237–1242.
  29. Kalogeropoulos AP, Georgiopoulou VV, Borlaug BA, et al. Left ventricular dysfunction with pulmonary hypertension: part 2: prognosis, noninvasive evaluation, treatment, and future research. Circ Heart Fail. 2013; 6(3): 584–593.
  30. Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery hemodynamic monitoring in chronic heart failure: a randomized controlled trial. Lancet. 2011; 377: 658–666.
  31. Haddad F, Kudelko K, Mercier O, et al. Pulmonary hypertension associated with left heart disease: characteristics, emerging concepts, and treatment strategies. Prog Cardiovasc Dis. 2011; 54(2): 154–167.
  32. Kieler-Jensen N, Lundin S, Ricksten SE. Vasodilator therapy after heart transplantation: effects of inhaled nitric oxide and intravenous prostacyclin, prostaglandin E1, and sodium nitroprusside. J Heart Lung Transplant. 1995; 14(3): 436–443.
  33. Matamis D, Pampori S, Papathanasiou A, et al. Inhaled NO and sildenafil combination in cardiac surgery patients with out-of-proportion pulmonary hypertension: acute effects on postoperative gas exchange and hemodynamics. Circ Heart Fail. 2012; 5(1): 47–53.
  34. Sueta CA, Gheorghiade M, Adams KF, et al. Safety and efficacy of epoprostenol in patients with severe congestive heart failure. Epoprostenol Multicenter Research Group. Am J Cardiol. 1995; 75(3): 34A–43A.
  35. Shah MR, Stinnett SS, McNulty SE, et al. Hemodynamics as surrogate end points for survival in advanced heart failure: an analysis from FIRST. Am Heart J. 2001; 141(6): 908–914.
  36. Sütsch G, Kiowski W, Yan XW, et al. Short-term oral endothelin-receptor antagonist therapy in conventionally treated patients with symptomatic severe chronic heart failure. Circulation. 1998; 98(21): 2262–2268.
  37. Hefke T, Zittermann A, Fuchs U, et al. Bosentan effects on hemodynamics and clinical outcome in heart failure patients with pulmonary hypertension awaiting cardiac transplantation. Thorac Cardiovasc Surg. 2012; 60(1): 26–34.
  38. Guazzi M, Vicenzi M, Arena R, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011; 124(2): 164–174.
  39. Di Salvo TG. Pulmonary hypertension and right ventricular failure in left ventricular systolic dysfunction. Curr Opin Cardiol. 2012; 27(3): 262–272.
  40. Borlaug BA, Lewis GD, McNulty SE, et al. Effects of sildenafil on ventricular and vascular function in heart failure with preserved ejection fraction. Circ Heart Fail. 2015; 8(3): 533–541.
  41. Wu X, Yang Te, Zhou Qi, et al. Additional use of a phosphodiesterase 5 inhibitor in patients with pulmonary hypertension secondary to chronic systolic heart failure: a meta-analysis. Eur J Heart Fail. 2014; 16(4): 444–453.
  42. Cooper TJ, Guazzi M, Al-Mohammad A, et al. Sildenafil in Heart failure (SilHF). An investigator-initiated multinational randomized controlled clinical trial: rationale and design. Eur J Heart Fail. 2013; 15(1): 119–122.
  43. Bonderman D, Ghio S, Felix SB, et al. Left Ventricular Systolic Dysfunction Associated With Pulmonary Hypertension Riociguat Trial (LEPHT) Study Group. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013; 128(5): 502–511.
  44. Bonderman D, Pretsch I, Steringer-Mascherbauer R, et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014; 146(5): 1274–1285.
  45. Lancellotti P, Magne J, Dulgheru R, et al. Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation. Am J Cardiol. 2015; 115: 1554–1561.