open access

Ahead of print
Review Papers
Published online: 2020-09-25
Get Citation

The role of limiting sodium intake in the diet — from theory to practice

Stanisław Surma, Monika Romańczyk, Edward Bańkowski
DOI: 10.5603/FC.2020.0030

open access

Ahead of print
Review Papers
Published online: 2020-09-25

Abstract

Sodium is the main extracellular cation. In recent years, many mechanisms that have been involved in the regulation of sodium metabolism have been described, such as interstitial tissue and glycosaminoglycans, Th17 lymphocytes and interleukin 17, epithelial sodium channel, glycocalyx and proprotein converting enzyme subtilisin/kexin type 6. Complexity of homeostasis mechanisms sodium makes it an interest in modern pharmacology. The described mechanisms somewhat explain the sodium sensitivity phenomenon occurring in a significant proportion of patients with arterial hypertension.

Processed foods are the main source of salt in the diet. The food processing process is associated with a significant increase in the salt content of these products. Excessive salt intake in the diet is observed in most countries of the world. The relationship between excessive salt intake in the diet and the occurrence of diseases such as hypertension, stroke, stomach cancer, left ventricular hypertrophy, urolithiasis and others has been the subject of numerous studies. Numerous benefits of reducing salt in the diet have been demonstrated.

Abstract

Sodium is the main extracellular cation. In recent years, many mechanisms that have been involved in the regulation of sodium metabolism have been described, such as interstitial tissue and glycosaminoglycans, Th17 lymphocytes and interleukin 17, epithelial sodium channel, glycocalyx and proprotein converting enzyme subtilisin/kexin type 6. Complexity of homeostasis mechanisms sodium makes it an interest in modern pharmacology. The described mechanisms somewhat explain the sodium sensitivity phenomenon occurring in a significant proportion of patients with arterial hypertension.

Processed foods are the main source of salt in the diet. The food processing process is associated with a significant increase in the salt content of these products. Excessive salt intake in the diet is observed in most countries of the world. The relationship between excessive salt intake in the diet and the occurrence of diseases such as hypertension, stroke, stomach cancer, left ventricular hypertrophy, urolithiasis and others has been the subject of numerous studies. Numerous benefits of reducing salt in the diet have been demonstrated.

Get Citation

Keywords

sodium, salt, cardiovascular diseas

About this article
Title

The role of limiting sodium intake in the diet — from theory to practice

Journal

Folia Cardiologica

Issue

Ahead of print

Published online

2020-09-25

DOI

10.5603/FC.2020.0030

Keywords

sodium
salt
cardiovascular diseas

Authors

Stanisław Surma
Monika Romańczyk
Edward Bańkowski

References (55)
  1. Surma S, Adamczak M, Więcek A. Hiponatremia spowodowana tiazydowymi i tiazydopodobnymi lekami moczopędnymi. Terapia. 2019; 10(381): 4–10.
  2. Hyla-Klekot L, Kokot F. Nerkowa regulacja gospodarki sodowej. Nefrol Dial Pol. 2010; 14(2): 59–62.
  3. Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant. 2014; 29(2): 1–39.
  4. Esteva-Font C, Ballarin J, Fernández-Llama P. Molecular biology of water and salt regulation in the kidney. Cell Mol Life Sci. 2012; 69(5): 683–695.
  5. Kokot F. Gospodarka wodno-elektrolitowa i kwasowo-zasadowa w stanach fizjologii i patologii. Wydanie VI. Wydawnictwo Lekarskie PZWL, Warszawa 2005.
  6. Titze J, Machnik A. Sodium sensing in the interstitium and relationship to hypertension. Curr Opin Nephrol Hypertens. 2010; 19(4): 385–392.
  7. Titze J. Water-free sodium accumulation. Semin Dial. 2009; 22(3): 253–255.
  8. Kokot F, Hyla-Klekot L. Sodium sensors of the matrix of the interstitial fluid space and endothelial vascular cells — role in the extrarenal regulation of sodium metabolism and blood pressure. Arterial Hypertens. 2011; 15(1): 1–4.
  9. Machnik A, Neuhofer W, Jantsch J, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009; 15(5): 545–552.
  10. Selvarajah V, Connolly K, McEniery C, et al. Skin sodium and hypertension: a paradigm shift? Curr Hypertens Rep. 2018; 20(11): 94.
  11. Selvarajah V, Mäki-Petäjä KM, Pedro L, et al. Novel mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor C, and blood pressure. Hypertension. 2017; 70(5): 930–937.
  12. Titze J. Sodium balance is not just a renal affair. Curr Opin Nephrol Hypertens. 2014; 23(2): 101–105.
  13. Weinberg MH, Miller JZ, Luft FC, et al. Definition and characterictics of sodium sen-sivity and blood pressure resistance. Hypertension. 1986; 8(6 Pt 2): II127–II134.
  14. He FJ, MacGregor GA. Reducing population salt intake worldwide: from evidence to implementation. Prog Cardiovasc Dis. 2010; 52(5): 363–382.
  15. Machnik A, Dahlmann A, Kopp C, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010; 55(3): 755–761.
  16. Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007; 204(10): 2449–2460.
  17. Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates T17 axis and disease. Nature. 2017; 551(7682): 585–589.
  18. Wyatt CM, Crowley SD. Intersection of salt- and immune-mediated mechanisms of hypertension in the gut microbiome. Kidney Int. 2018; 93(3): 532–534.
  19. Park JS, Oh Y, Park O, et al. PEGylated TRAIL ameliorates experimental inflammatory arthritis by regulation of Th17 cells and regulatory T cells. J Control Release. 2017; 267: 163–171.
  20. Smiljanec K, Lennon SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol Heart Circ Physiol. 2019; 317(6): H1173–H1182.
  21. Adamczak M, Ritz E. Endogenne steroidy kardiotoniczne — oubaina, imarinobuf-agenina a nadciśnienie tętnicze. Postępy w nefrologii i nadciśnieniu tętniczym. Medycyna Praktyczna, Kraków 2008.
  22. Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension. 2005; 46(6): 1227–1235.
  23. Yoshida S, Ishizawa K, Ayuzawa N, et al. Local mineralocorticoid receptor activation and the role of Rac1 in obesity-related diabetic kidney disease. Nephron Exp Nephrol. 2014; 126(1): 16–24.
  24. Oberleithner H, Kusche-Vihrog K, Schillers H. Endothelial cells as vascular salt sensors. Kidney Int. 2010; 77(6): 490–494.
  25. Callies C, Fels J, Liashkovich I, et al. Membrane potential depolarization decreases the stiffness of vascular endothelial cells. J Cell Sci. 2011; 124(Pt 11): 1936–1942.
  26. Fels J, Jeggle P, Liashkovich I, et al. Nanomechanics of vascular endothelium. Cell Tissue Res. 2014; 355(3): 727–737.
  27. Oberleithner H, Riethmüller C, Schillers H, et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci USA. 2007; 104(41): 16281–16286.
  28. Li J, White J, Guo L, et al. Salt inactivates endothelial nitric oxide synthase in endothelial cells. J Nutr. 2009; 139(3): 447–451.
  29. Oberleithner H, Callies C, Kusche-Vihrog K, et al. Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA. 2009; 106(8): 2829–2834.
  30. Shenghan C, Pengxiu C, Ningzheng D, et al. PCSK6-mediated corin activation is es-sential for normal blood pressure. Nat Med. 2015; 21(9): 1048–1053.
  31. Adamczak M, Sabiak-Błaż N, Ritz E. Sól a nadciśnienie tętnicze. In: Więcek A, Kokot F. ed. Postępy w nefrologii i nadciśnieniu tętniczym. Tom IX. Medycyna Praktyczna, Kraków 2010: 11–17.
  32. https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-10/How-to-quantify-salt-intake-in-certain-patients (April 20, 2020).
  33. https://ncez.pl/abc-zywienia-/zasady-zdrowego-zywienia/zawartosc-soli-w-produktach-spozywczych- (April 20, 2020).
  34. Jeżewska M, Kulczak M, Błasińska I. Zawartość soli w wybranych koncentratach obi-adowych. Bromat Chem Toksykol. 2011; 3: 585–590.
  35. Jaworowska A, Blackham T, Stevenson L, et al. Determination of salt content in hot takeaway meals in the United Kingdom. Appetite. 2012; 59(2): 517–522.
  36. Mojska H, Świderska K. Zawartość soli w produktach fast food w Polsce. Cz.1. Frytki ziemniaczane. Żyw Człow. 2011; 38(6): 449–456.
  37. Tabela wartości odżywczych. http://www.mcdonalds.pl (April 20, 2020).
  38. www.zdrowie.med.pl (April 20, 2020).
  39. Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med. 1985; 312(5): 283–289.
  40. Eaton SB, Eaton SB. Paleolithic vs. modern diets — selected pathophysiological implications. Eur J Nutr. 2000; 39(2): 67–70.
  41. Heerspink HJL, Navis G, Ritz E. Salt intake in kidney disease — a missed therapeutic opportunity? Nephrol Dial Transplant. 2012; 27(9): 3435–3442.
  42. Powles J, Fahimi S, Micha R, et al. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open. 2013; 3(12): e003733.
  43. Mozaffarian D, Fahimi S, Singh GM, et al. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014; 371(7): 624–634.
  44. Stamler J. The INTERSALT Study: background, methods, findings, and implications. Am J Clin Nutr. 1997; 65(2 Suppl): 626S–642S.
  45. He F, MacGregor G. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev. 2004.
  46. Graudal NA, Hubeck-Graudal T, Jürgens G. Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am J Hypertens. 2012; 25(1): 1–15.
  47. Pimenta E, Gaddam KK, Oparil S, et al. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial. Hypertension. 2009; 54(3): 475–481.
  48. Whelton PK, Appel LJ, Espeland MA, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). TONE Collaborative Research Group. JAMA. 1998; 279(11): 839–846.
  49. Cappuccio FP, Capewell S, Lincoln P, et al. Policy options to reduce population salt intake. BMJ. 2011; 343: d4995.
  50. Cappuccio FP. Cardiovascular and other effects of salt consumption. Kidney Int Suppl (2011). 2013; 3(4): 312–315.
  51. Schmieder RE, Langenfeld MR, Schmieder RE, et al. Sodium intake modulates left ventricular hypertrophy in essential hypertension. J Hypertens Suppl. 1988; 6(4): S148–S150.
  52. Barba G, Cappuccio FP, Russo L, et al. Renal function and blood pressure response to dietary salt restriction in normotensive men. Hypertension. 1996; 27(5): 1160–1164.
  53. Tykarski A, Filipiak K, Januszewicz A, et al. Wytyczne PTNT. Zasady postępowania w nadciśnieniu tętniczym 2019. Arterial Hypertens. 2019; 23(2): 41–87.
  54. Jarosz M, Szponar L, Rychlik E, Wierzejska E. Woda i elektrolity. In: Jarosz M. ed. Normy żywienia dla populacji polskiej — nowelizacja. Instytut Żywności i Żywienia, Warszawa 2012: 143–153.
  55. Chang HY, Hu YW, Yue CSJ, et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am J Clin Nutr. 2006; 83(6): 1289–1296.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

 

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl