open access

Vol 73, No 3 (2022)
Guidelines / Expert consensus
Submitted: 2022-04-25
Accepted: 2022-04-26
Published online: 2022-06-30
Get Citation

Pancreatic neuroendocrine neoplasms — update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours) [Nowotwory neuroendokrynne trzustki — uaktualnione zasady diagnostyki i leczenia (rekomendowane przez Polską Sieć Guzów Neuroendokrynych)]

Beata Kos-Kudła1, Violetta Rosiek1, Małgorzata Borowska2, Tomasz Bednarczuk3, Marek Bolanowski4, Ewa Chmielik5, Jarosław B. Ćwikła6, Wanda Foltyn1, Iwona Gisterek7, Daria Handkiewicz-Junak8, Alicja Hubalewska-Dydejczyk9, Michał Jarząb10, Roman Junik11, Dariusz Kajdaniuk12, Grzegorz Kamiński13, Agnieszka Kolasińska-Ćwikła14, Aldona Kowalska15, Leszek Królicki16, Jolanta Kunikowska16, Katarzyna Kuśnierz17, Andrzej Lewiński18, Łukasz Liszka19, Magdalena Londzin-Olesik1, Bogdan Marek12, Anna Malczewska1, Anna Nasierowska-Guttmejer20, Ewa Nowakowska-Duława21, Marianne E. Pavel22, Joanna Pilch-Kowalczyk23, Jarosław Reguła24, Marek Ruchała25, Grażyna Rydzewska26, Lucyna Siemińska12, Anna Sowa-Staszczak9, Teresa Starzyńska27, Zoran Stojčev28, Janusz Strzelczyk1, Michał Studniarek29, Anhelli Syrenicz30, Marek Szczepkowski31, Ewa Wachuła32, Wojciech Zajęcki2, Anna Zemczak1, Wojciech Zgliczyński33, Krzysztof Zieniewicz34
·
Pubmed: 36059173
·
Endokrynol Pol 2022;73(3):491-548.
Affiliations
  1. Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
  2. Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, Katowice, Poland
  3. Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
  4. Chair and Department of Endocrinology, Diabetes, and Isotope Therapy, Medical University of Wroclaw, Wroclaw, Poland
  5. Tumor Pathology Department, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
  6. Department of Cardiology and Internal Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
  7. Chair of Oncology and Radiotherapy, Medical University of Silesia, Katowice, Poland
  8. Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Gliwice Brench, Gliwice, Poland
  9. Chair and Department of Endocrinology, Jagiellonian University Medical College, Cracow, Poland
  10. Breast Unit, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
  11. Department of Endocrinology and Diabetology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
  12. Division of Pathophysiology, Department of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
  13. Department of Endocrinology and Radioisotope Therapy, Military Institute of Medicine, Warsaw, Poland
  14. Department of Oncology and Radiotherapy, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Warsaw, Poland
  15. Department of Endocrinology, Holycross Cancer Centre, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
  16. Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
  17. Department of Gastrointestinal Surgery, Medical University of Silesia, Katowice, Poland
  18. Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Lodz, Poland
  19. Department of Pathomorphology and Molecular Diagnostics, Medical University of Silesia, Katowice, Poland
  20. Faculty of Medicine, Lazarski University in Warsaw, Warsaw, Poland
  21. Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice, Poland
  22. Department of Medicine 1, Endocrinology and Diabetology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
  23. Department of Radiology and Nuclear Medicine, Medical University of Silesia, Katowice, Poland;
  24. Department of Oncological Gastroenterology, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Warsaw, Poland
  25. Department of Endocrinology, Metabolism and Internal Diseases, Medical University in Poznan, Poznan, Poland
  26. Department of Internal Medicine and Gastroenterology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
  27. Department of Gastroenterology, Medical Pomeranian University in Szczecin, Szczecin, Poland
  28. Department of Oncology and Breast Diseases, Centre of Postgraduate Medical Education, Warsaw, Poland
  29. Department of Radiology, Medical University of Gdansk, Gdansk, Poland
  30. Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
  31. Clinical Department of Colorectal, General and Oncological Surgery, Centre of Postgraduate Medical Education, Warsaw, Poland
  32. Department of Clinical Oncology, Gdynia Oncology Centre of the Polish Red Cross Maritime Hospital, Gdynia, Poland
  33. Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
  34. Chair and Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, Warsaw, Poland

open access

Vol 73, No 3 (2022)
Guidelines
Submitted: 2022-04-25
Accepted: 2022-04-26
Published online: 2022-06-30

Abstract

In this paper, we present the current guidelines for the diagnostics and management of pancreatic neuroendocrine neoplasms (PanNENs) developed by Polish experts providing care for these patients in everyday clinical practice.

In oncological diagnostics, in addition to biochemical tests, molecular identification with the use of NETest liquid biopsy and circulating microRNAs is gaining importance. Both anatomical and functional examinations (including new radiopharmaceuticals) are used in imaging diagnostics. Histopathological diagnosis along with immunohistochemical examination still constitute the basis for therapeutic decisions. Whenever possible, surgical procedure is the treatment of choice. Pharmacological management including biotherapy, radioisotope therapy, targeted molecular therapy and chemotherapy are important methods of systemic therapy.

Treatment of PanNENs requires a multidisciplinary team of specialists in the field of neuroendocrine neoplasms.

Abstract

In this paper, we present the current guidelines for the diagnostics and management of pancreatic neuroendocrine neoplasms (PanNENs) developed by Polish experts providing care for these patients in everyday clinical practice.

In oncological diagnostics, in addition to biochemical tests, molecular identification with the use of NETest liquid biopsy and circulating microRNAs is gaining importance. Both anatomical and functional examinations (including new radiopharmaceuticals) are used in imaging diagnostics. Histopathological diagnosis along with immunohistochemical examination still constitute the basis for therapeutic decisions. Whenever possible, surgical procedure is the treatment of choice. Pharmacological management including biotherapy, radioisotope therapy, targeted molecular therapy and chemotherapy are important methods of systemic therapy.

Treatment of PanNENs requires a multidisciplinary team of specialists in the field of neuroendocrine neoplasms.

Get Citation

Keywords

pancreatic neuroendocrine neoplasms; functional; non-functional; diagnostics; therapy; recommendations

Supp./Additional Files (2)
Supplementary File [Materiały dodatkowe] — Tab. S1, S2
Download
81KB
Conflict of interests [Konflikt interesów]
Download
248KB
About this article
Title

Pancreatic neuroendocrine neoplasms — update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours) [Nowotwory neuroendokrynne trzustki — uaktualnione zasady diagnostyki i leczenia (rekomendowane przez Polską Sieć Guzów Neuroendokrynych)]

Journal

Endokrynologia Polska

Issue

Vol 73, No 3 (2022)

Article type

Guidelines / Expert consensus

Pages

491-548

Published online

2022-06-30

Page views

6283

Article views/downloads

2162

DOI

10.5603/EP.a2022.0050

Pubmed

36059173

Bibliographic record

Endokrynol Pol 2022;73(3):491-548.

Keywords

pancreatic neuroendocrine neoplasms
functional
non-functional
diagnostics
therapy
recommendations

Authors

Beata Kos-Kudła
Violetta Rosiek
Małgorzata Borowska
Tomasz Bednarczuk
Marek Bolanowski
Ewa Chmielik
Jarosław B. Ćwikła
Wanda Foltyn
Iwona Gisterek
Daria Handkiewicz-Junak
Alicja Hubalewska-Dydejczyk
Michał Jarząb
Roman Junik
Dariusz Kajdaniuk
Grzegorz Kamiński
Agnieszka Kolasińska-Ćwikła
Aldona Kowalska
Leszek Królicki
Jolanta Kunikowska
Katarzyna Kuśnierz
Andrzej Lewiński
Łukasz Liszka
Magdalena Londzin-Olesik
Bogdan Marek
Anna Malczewska
Anna Nasierowska-Guttmejer
Ewa Nowakowska-Duława
Marianne E. Pavel
Joanna Pilch-Kowalczyk
Jarosław Reguła
Marek Ruchała
Grażyna Rydzewska
Lucyna Siemińska
Anna Sowa-Staszczak
Teresa Starzyńska
Zoran Stojčev
Janusz Strzelczyk
Michał Studniarek
Anhelli Syrenicz
Marek Szczepkowski
Ewa Wachuła
Wojciech Zajęcki
Anna Zemczak
Wojciech Zgliczyński
Krzysztof Zieniewicz

References (191)
  1. Dasari A, Shen C, Halperin D, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017; 3(10): 1335–1342.
  2. Howe JR, Merchant NB, Conrad C, et al. The North American Neuroendocrine Tumor Society Consensus Paper on the Surgical Management of Pancreatic Neuroendocrine Tumors. Pancreas. 2020; 49(1): 1–33.
  3. Halfdanarson TR, Strosberg JR, Tang L, et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Pancreatic Neuroendocrine Tumors. Pancreas. 2020; 49(7): 863–881.
  4. Franko J, Feng W, Yip L, et al. Non-functional neuroendocrine carcinoma of the pancreas: incidence, tumor biology, and outcomes in 2,158 patients. J Gastrointest Surg. 2010; 14(3): 541–548.
  5. Schimmack S, Svejda B, Lawrence B, et al. The diversity and commonalities of gastroenteropancreatic neuroendocrine tumors. Langenbecks Arch Surg. 2011; 396(3): 273–298.
  6. Kuo JH, Lee JA, Chabot JA. Nonfunctional pancreatic neuroendocrine tumors. Surg Clin North Am. 2014; 94(3): 689–708.
  7. Capelli P, Fassan M, Scarpa A. Pathology — grading and staging of GEP-NETs. Best Pract Res Clin Gastroenterol. 2012; 26(6): 705–717.
  8. Ito T, Igarashi H, Nakamura K, et al. Epidemiological trends of pancreatic and gastrointestinal neuroendocrine tumors in Japan: a nationwide survey analysis. J Gastroenterol. 2015; 50(1): 58–64.
  9. Cho MY, Kim JM, Sohn JH, et al. Gastrointestinal Pathology Study Group of Korean Society of Pathologists. Current Trends of the Incidence and Pathological Diagnosis of Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs) in Korea 2000-2009: Multicenter Study. Cancer Res Treat. 2012; 44(3): 157–165.
  10. Tsai HJ, Wu CC, Tsai CR, et al. The epidemiology of neuroendocrine tumors in Taiwan: a nation-wide cancer registry-based study. PLoS One. 2013; 8(4): e62487.
  11. Scherübl H, Streller B, Stabenow R, et al. Clinically detected gastroenteropancreatic neuroendocrine tumors are on the rise: epidemiological changes in Germany. World J Gastroenterol. 2013; 19(47): 9012–9019.
  12. Kos-Kudła B, Hubalewska-Dydejczyk A, Kuśnierz K, et al. Consensus Conference, Polish Network of Neuroendocrine Tumours. Pancreatic neuroendocrine neoplasms — management guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2013; 64(6): 459–479.
  13. Pavel M, Öberg K, Falconi M, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020; 31(7): 844–860.
  14. Kos-Kudła B, Rosiek V, Borowska M, et al. Pancreatic neuroendocrine neoplasms — management guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2017; 68(2): 169–197.
  15. Öberg K, Knigge U, Kwekkeboom D, et al. ESMO Guidelines Working Group. Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012; 23 Suppl 7: vii124–vii130.
  16. Falconi M, Bartsch DK, Eriksson B, et al. Barcelona Consensus Conference participants. ENET Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology. 2012; 95(2): 120–134.
  17. Jensen RT, Cadiot G, Brandi ML, et al. Barcelona Consensus Conference participants. ENET Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012; 95(2): 98–119.
  18. Falconi M, Eriksson B, Kaltsas G, et al. Vienna Consensus Conference participants. ENET Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology. 2016; 103(2): 153–171.
  19. Öberg K. Pancreatic endocrine tumors. Semin Oncol. 2010; 37(6): 594–618.
  20. Ito T, Igarashi H, Uehara H, et al. Causes of death and prognostic factors in multiple endocrine neoplasia type 1: a prospective study: comparison of 106 MEN1/Zollinger-Ellison syndrome patients with 1613 literature MEN1 patients with or without pancreatic endocrine tumors. Medicine (Baltimore). 2013; 92(3): 135–181.
  21. Thakker RV, Newey PJ, Walls GV, et al. Endocrine Society. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab. 2012; 97(9): 2990–3011.
  22. Vanderveen K, Grant C. Insulinoma. Cancer Treat Res. 2010; 153: 235–252.
  23. Zhao YP, Zhan HX, Zhang TP, et al. Surgical management of patients with insulinomas: Result of 292 cases in a single institution. J Surg Oncol. 2011; 103(2): 169–174.
  24. Kos-Kudła B, Foltyn W, Malczewska A, et al. Update of the diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 387–473.
  25. Ekeblad S. Islet cell tumours. Adv Exp Med Biol. 2010; 654: 771–789.
  26. Garcia-Carbonero R, Capdevila J, Crespo-Herrero G, et al. Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): results from the National Cancer Registry of Spain (RGETNE). Ann Oncol. 2010; 21(9): 1794–1803.
  27. Poultsides GA, Huang LC, Chen Y, et al. Pancreatic neuroendocrine tumors: radiographic calcifications correlate with grade and metastasis. Ann Surg Oncol. 2012; 19(7): 2295–2303.
  28. Panzuto F, Merola E, Rinzivillo M, et al. Advanced digestive neuroendocrine tumors: metastatic pattern is an independent factor affecting clinical outcome. Pancreas. 2014; 43(2): 212–218.
  29. Panzuto F, Boninsegna L, Fazio N, et al. Metastatic and locally advanced pancreatic endocrine carcinomas: analysis of factors associated with disease progression. J Clin Oncol. 2011; 29(17): 2372–2377.
  30. Qiao XW, Qiu L, Chen YJ, et al. Chromogranin A is a reliable serum diagnostic biomarker for pancreatic neuroendocrine tumors but not for insulinomas. BMC Endocr Disord. 2014; 14: 64.
  31. Sakurai A, Yamazaki M, Suzuki S, et al. Clinical features of insulinoma in patients with multiple endocrine neoplasia type 1: analysis of the database of the MEN Consortium of Japan. Endocr J. 2012; 59(10): 859–866.
  32. Kos-Kudła B, Zemczak A. Diagnostyka biochemiczna guzów neuroendokrynnych układu pokarmowego. In: Kos-Kudła B. ed. Guzy neroendokrynne układu pokarmowego. Via Medica, Gdańsk 2010: 17–24.
  33. Blicharz-Dorniak J, Kos-Kudła B, Foltyn W, et al. Is determination of matrix metalloproteinases and their tissue inhibitors serum concentrations useful in patients with gastroenteropancreatic and bronchopulmonary neuroendocrine neoplasms? Endokrynol Pol. 2012; 63(6): 470–476.
  34. Korse CM, Taal BG, Vincent A, et al. Choice of tumour markers in patients with neuroendocrine tumours is dependent on the histological grade. A marker study of Chromogranin A, Neuron specific enolase, Progastrin-releasing peptide and cytokeratin fragments. Eur J Cancer. 2012; 48(5): 662–671.
  35. Klöppel G, Couvelard A, Hruban RH. Tumours of the endocrine pancreas. In: Lloyd RV, Osamura RY, Klöppel G, Rosai J. ed. WHO Classification of the Tumours of Endocrine Organs, 4th ed. International Agency for Research on Cancer, Lyon 2017: 175–207.
  36. Heetfeld M, Chougnet CN, Olsen IH, et al. other Knowledge Network members. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015; 22(4): 657–664.
  37. Fazio N, Milione M. Heterogeneity of grade 3 gastroenteropancreatic neuroendocrine carcinomas: New insights and treatment implications. Cancer Treat Rev. 2016; 50: 61–67.
  38. Basturk O, Yang Z, Tang LH, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015; 39(5): 683–690.
  39. Milione M, Maisonneuve P, Spada F, et al. The Clinicopathologic Heterogeneity of Grade 3 Gastroenteropancreatic Neuroendocrine Neoplasms: Morphological Differentiation and Proliferation Identify Different Prognostic Categories. Neuroendocrinology. 2017; 104(1): 85–93.
  40. Rindi G, Klimstra DS, Abedi-Ardekani B, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018; 31(12): 1770–1786.
  41. WHO Classification of Tumours Editorial Board; Digestive System Tumours. In: WHO Classification of Tumours. 5th ed. IARC Press, Lyon 2019.
  42. Guilmette JM, Nosé V. Neoplasms of the Neuroendocrine Pancreas: An Update in the Classification, Definition, and Molecular Genetic Advances. Adv Anat Pathol. 2019; 26(1): 13–30.
  43. Brierley JD, Gospodarowicz MK, Wittekind CT. TNM Classification of Malignant Tumours. 8th ed. John Wiley & Sons, Oxford 2017.
  44. Walczyk J, Sowa-Staszczak A. Diagnostic imaging of gastrointestinal neuroendocrine neoplasms with a focus on ultrasound. J Ultrason. 2019; 19(78): 228–235.
  45. Ramage JK, Davies AHG, Ardill J, et al. UKNETwork for Neuroendocrine Tumours. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours. Gut. 2005; 54 Suppl 4: iv1–i16.
  46. Del Prete M, Di Sarno A, Modica R, et al. Role of contrast-enhanced ultrasound to define prognosis and predict response to biotherapy in pancreatic neuroendocrine tumors. J Endocrinol Invest. 2017; 40(12): 1373–1380.
  47. Hocke M, Schulze E, Gottschalk P, et al. Contrast-enhanced endoscopic ultrasound in discrimination between focal pancreatitis and pancreatic cancer. World J Gastroenterol. 2006; 12(2): 246–250.
  48. Saleh M, Bhosale P, Yano M, et al. New frontiers in imaging including radiomics updates for pancreatic neuroendocrine neoplasms. Abdom Radiol. 2020.
  49. Giesel FL, Flechsing P, Kuder T, et al. Contrast-enhanced ultrasound monitoring of perfusion changes in hepatic neuroendocrine metastases after systemic versus selective arterial 177Lu/90Y- DOTATOC and 213Bi-DOTATOC radiopeptide therapy. Exp Oncol. 2013; 35(2): 122–126.
  50. Shah MH, Goldner WS, Benson AB, et al. Neuroendocrine and Adrenal Tumors, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021; 19(7): 839–868.
  51. Puli SR, Kalva N, Bechtold ML, et al. Diagnostic accuracy of endoscopic ultrasound in pancreatic neuroendocrine tumors: a systematic review and meta analysis. World J Gastroenterol. 2013; 19(23): 3678–3684.
  52. Wang H, Ba Y, Xing Q, et al. Diagnostic value of endoscopic ultrasound for insulinoma localization: A systematic review and meta-analysis. PLoS One. 2018; 13(10): e0206099.
  53. Kaneko M, Katanuma A, Maguchi H, et al. Prospective, randomized, comparative study of delineation capability of radial scanning and curved linear array endoscopic ultrasound for the pancreaticobiliary region. Endosc Int Open. 2014; 2(3): E160–E170.
  54. McCall CM, Shi C, Klein AP, et al. Serotonin expression in pancreatic neuroendocrine tumors correlates with a trabecular histologic pattern and large duct involvement. Hum Pathol. 2012; 43(8): 1169–1176.
  55. Ishikawa T, Itoh A, Kawashima H, et al. Usefulness of EUS combined with contrast-enhancement in the differential diagnosis of malignant versus benign and preoperative localization of pancreatic endocrine tumors. Gastrointest Endosc. 2010; 71(6): 951–959.
  56. Kitano M, Kudo M, Yamao K, et al. Characterization of small solid tumors in the pancreas: the value of contrast-enhanced harmonic endoscopic ultrasonography. Am J Gastroenterol. 2012; 107(2): 303–310.
  57. Palazzo M, Napoléon B, Gincul R, et al. Contrast harmonic EUS for the prediction of pancreatic neuroendocrine tumor aggressiveness (with videos). Gastrointest Endosc. 2018; 87(6): 1481–1488.
  58. Costache MI, Cazacu IM, Dietrich CF, et al. Clinical impact of strain histogram EUS elastography and contrast-enhanced EUS for the differential diagnosis of focal pancreatic masses: A prospective multicentric study. Endosc Ultrasound. 2020; 9(2): 116–121.
  59. Giovannini M, Caillol F, Monges G, et al. Endoscopic ultrasound-guided needle-based confocal laser endomicroscopy in solid pancreatic masses. Endoscopy. 2016; 48(10): 892–898.
  60. Chen S, Lin J, Wang X, et al. EUS-guided FNA cytology of pancreatic neuroendocrine tumour (PanNET): a retrospective study of 132 cases over an 18-year period in a single institution. Cytopathology. 2014; 25(6): 396–403.
  61. Polkowski M, Jenssen C, Kaye P, et al. Technical aspects of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Technical Guideline - March 2017. Endoscopy. 2017; 49(10): 989–1006.
  62. Atiq M, Bhutani MS, Bektas M, et al. EUS-FNA for pancreatic neuroendocrine tumors: a tertiary cancer center experience. Dig Dis Sci. 2012; 57(3): 791–800.
  63. Partelli S, Cirocchi R, Crippa S, et al. Systematic review of active surveillance versus surgical management of asymptomatic small non-functioning pancreatic neuroendocrine neoplasms. Br J Surg. 2017; 104(1): 34–41.
  64. Rosa F, Rimbaș M, Rizzatti G, et al. EUS-guided fine needle tattooing (EUS-FNT) for preoperative localization of small pancreatic neuroendocrine tumors (p-NETs): a single-center experience. Surg Endosc. 2021; 35(1): 486–492.
  65. Law JK, Singh VK, Khashab MA, et al. Endoscopic ultrasound (EUS)-guided fiducial placement allows localization of small neuroendocrine tumors during parenchymal-sparing pancreatic surgery. Surg Endosc. 2013; 27(10): 3921–3926.
  66. Daskalakis K, Tsoli M, Alexandraki KI, et al. Magnetic Resonance Imaging or Endoscopic Ultrasonography for Detection and Surveillance of Pancreatic Neuroendocrine Neoplasms in Patients with Multiple Endocrine Neoplasia Type 1? Horm Metab Res. 2019; 51(9): 580–585.
  67. van Asselt SJ, Brouwers AH, van Dullemen HM, et al. EUS is superior for detection of pancreatic lesions compared with standard imaging in patients with multiple endocrine neoplasia type 1. Gastrointest Endosc. 2015; 81(1): 159–167.e2.
  68. van Asselt SJ, Brouwers AH, van Dullemen HM, et al. Potential value of EUS in pancreatic surveillance of VHL patients. Eur J Endocrinol. 2016; 174(5): 611–620.
  69. Kann PH. Is endoscopic ultrasonography more sensitive than magnetic resonance imaging in detecting and localizing pancreatic neuroendocrine tumors? Rev Endocr Metab Disord. 2018; 19(2): 133–137.
  70. Doi R. Determinants of surgical resection for pancreatic neuroendocrine tumors. J Hepatobiliary Pancreat Sci. 2015; 22(8): 610–617.
  71. Sahani DV, Bonaffini PA, Fernández-Del Castillo C, et al. Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management. Radiology. 2013; 266(1): 38–61.
  72. Takumi K, Fukukura Y, Higashi M, et al. Pancreatic neuroendocrine tumors: Correlation between the contrast-enhanced computed tomography features and the pathological tumor grade. Eur J Radiol. 2015; 84(8): 1436–1443.
  73. Tatsumoto S, Kodama Y, Sakurai Y, et al. Pancreatic neuroendocrine neoplasm: correlation between computed tomography enhancement patterns and prognostic factors of surgical and endoscopic ultrasound-guided fine-needle aspiration biopsy specimens. Abdom Imaging. 2013; 38(2): 358–366.
  74. Yano M, Misra S, Carpenter DH, et al. Pancreatic Neuroendocrine Tumors: Computed Tomography Enhancement, But Not Histological Grade, Correlates With Tumor Aggression. Pancreas. 2017; 46(10): 1366–1372.
  75. Delrue L, Blanckaert P, Mertens D, et al. Tissue perfusion in pathologies of the pancreas: assessment using 128-slice computed tomography. Abdom Imaging. 2012; 37(4): 595–601.
  76. Kim JH, Eun HW, Kim YJ, et al. Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma. Eur Radiol. 2016; 26(5): 1338–1347.
  77. Pilch-Kowalczyk J. Anatomia radiologiczna i metody obrazowania trzustki. In: Leszczyński S, Pilch-Kowalczyk J. ed. Diagnostyka obrazowa. Układ trawienny. PZWL, Warszawa 2012.
  78. Zamboni GA, Ambrosetti MC, Zivelonghi C, et al. Solid non-functioning endocrine tumors of the pancreas: correlating computed tomography and pathology. HPB (Oxford). 2017; 19(11): 986–991.
  79. Ohki K, Igarashi T, Ashida H, et al. Usefulness of texture analysis for grading pancreatic neuroendocrine tumors on contrast-enhanced computed tomography and apparent diffusion coefficient maps. Jpn J Radiol. 2021; 39(1): 66–75.
  80. Xu W, Yan H, Xu L, et al. Correlation between radiologic features on contrast-enhanced CT and pathological tumor grades in pancreatic neuroendocrine neoplasms. J Biomed Res. 2020; 35(3): 179–188.
  81. Prokop M, Galanski M. Spiralna wielorzędowa tomografia komputerowa człowieka. Medipage, Warszawa 2015.
  82. Al-Hawary MM, Francis IR, Chari ST, et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology. 2014; 270(1): 248–260.
  83. Saleh M, Bhosale PR, Yano M, et al. New frontiers in imaging including radiomics updates for pancreatic neuroendocrine neoplasms. Abdom Radiol (NY). 2020 [Epub ahead of print].
  84. Iwaya H, Fukukura Y, Hashimoto S, et al. Prognostic significance of extracellular volume fraction with equilibrium contrast-enhanced computed tomography for pancreatic neuroendocrine neoplasms. Pancreatology. 2021; 21(4): 779–786.
  85. Lo GC, Kambadakone A. MR Imaging of Pancreatic Neuroendocrine Tumors. Magn Reson Imaging Clin N Am. 2018; 26(3): 391–403.
  86. Kartalis N, Lindholm TL, Aspelin P, et al. Diffusion-weighted magnetic resonance imaging of pancreas tumours. Eur Radiol. 2009; 19(8): 1981–1990.
  87. Calabrò D, Argalia G, Ambrosini V. Role of PET/CT and Therapy Management of Pancreatic Neuroendocrine Tumors. Diagnostics (Basel). 2020; 10(12).
  88. Mapelli P, Partelli S, Salgarello M, et al. Dual Tracer 68Ga-DOTATOC and 18F-FDG PET Improve Preoperative Evaluation of Aggressiveness in Resectable Pancreatic Neuroendocrine Neoplasms. Diagnostics (Basel). 2021; 11(2).
  89. Zhang J, Kulkarni HR, Singh A, et al. Peptide Receptor Radionuclide Therapy in Grade 3 Neuroendocrine Neoplasms: Safety and Survival Analysis in 69 Patients. J Nucl Med. 2019; 60(3): 377–385.
  90. Thang SP, Lung MS, Kong G, et al. Peptide receptor radionuclide therapy (PRRT) in European Neuroendocrine Tumour Society (ENETS) grade 3 (G3) neuroendocrine neoplasia (NEN) — a single-institution retrospective analysis. Eur J Nucl Med Mol Imaging. 2018; 45(2): 262–277.
  91. Waseem N, Aparici CM, Kunz PL. Evaluating the Role of Theranostics in Grade 3 Neuroendocrine Neoplasms. J Nucl Med. 2019; 60(7): 882–891.
  92. Kunikowska J, Ambrosini V, Herrmann K. EANM Focus 3: The International Conference on Molecular Imaging and Theranostics in Neuroendocrine Tumours-the consensus in a nutshell. Eur J Nucl Med Mol Imaging. 2021; 48(5): 1276–1277.
  93. Senanayake R, Gillett D, MacFarlane J, et al. New types of localization methods for adrenocorticotropic hormone-dependent Cushing's syndrome. Best Pract Res Clin Endocrinol Metab. 2021; 35(1): 101513.
  94. Bozkurt MF, Virgolini I, Balogova S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with Ga-DOTA-conjugated somatostatin receptor targeting peptides and F-DOPA. Eur J Nucl Med Mol Imaging. 2017; 44(9): 1588–1601.
  95. Somme F, Montaz-Rosset MS, Averous G, et al. Solid pseudopapillary tumour should be part of differential diagnosis of focal pancreatic lesions with increased F-FDOPA uptake. Clin Endocrinol (Oxf). 2020; 93(1): 78–81.
  96. Jansen TJP, van Lith SAM, Boss M, et al. Exendin-4 analogs in insulinoma theranostics. J Labelled Comp Radiopharm. 2019; 62(10): 656–672.
  97. Brand C, Abdel-Atti D, Zhang Y, et al. In vivo imaging of GLP-1R with a targeted bimodal PET/fluorescence imaging agent. Bioconjug Chem. 2014; 25(7): 1323–1330.
  98. Panzuto F, Massironi S, Partelli S, et al. Gastro-entero-pancreatic neuroendocrine neoplasia: The rules for non-operative management. Surg Oncol. 2020; 35: 141–148.
  99. Souche R, Hobeika C, Hain E, et al. Surgical Management of Neuroendocrine Tumours of the Pancreas. J Clin Med. 2020; 9(9).
  100. Assi HA, Mukherjee S, Kunz PL, et al. Surgery Versus Surveillance for Well-Differentiated, Nonfunctional Pancreatic Neuroendocrine Tumors: An 11-Year Analysis of the National Cancer Database. Oncologist. 2020; 25(2): e276–e283.
  101. Mansour JC, Chavin K, Morris-Stiff G, et al. Management of asymptomatic, well-differentiated PNETs: results of the Delphi consensus process of the Americas Hepato-Pancreato-Biliary Association. HPB (Oxford). 2019; 21(5): 515–523.
  102. Partelli S, Bartsch DK, Capdevila J, et al. Antibes Consensus Conference participants. ENET Consensus Guidelines for Standard of Care in Neuroendocrine Tumours: Surgery for Small Intestinal and Pancreatic Neuroendocrine Tumours. Neuroendocrinology. 2017; 105(3): 255–265.
  103. Norton JA, Foster DS, Ito T, et al. Gastrinomas: Medical or Surgical Treatment. Endocrinol Metab Clin North Am. 2018; 47(3): 577–601.
  104. Parekh JR, Wang SC, Bergsland EK, et al. Lymph node sampling rates and predictors of nodal metastasis in pancreatic neuroendocrine tumor resections: the UCSF experience with 149 patients. Pancreas. 2012; 41(6): 840–844.
  105. Tanaka M, Heckler M, Mihaljevic AL, et al. Systematic Review and Metaanalysis of Lymph Node Metastases of Resected Pancreatic Neuroendocrine Tumors. Ann Surg Oncol. 2021; 28(3): 1614–1624.
  106. Sahara K, Tsilimigras DI, Mehta R, et al. Trends in the Number of Lymph Nodes Evaluated Among Patients with Pancreatic Neuroendocrine Tumors in the United States: A Multi-Institutional and National Database Analysis. Ann Surg Oncol. 2020; 27(4): 1203–1212.
  107. Zandee WT, de Herder WW. The Evolution of Neuroendocrine Tumor Treatment Reflected by ENET Guidelines. Neuroendocrinology. 2018; 106(4): 357–365.
  108. de Rooij T, van Hilst J, van Santvoort H, et al. Dutch Pancreatic Cancer Group. Minimally Invasive Versus Open Distal Pancreatectomy (LEOPARD): A Multicenter Patient-blinded Randomized Controlled Trial. Ann Surg. 2019; 269(1): 2–9.
  109. Mehrabi A, Fischer L, Hafezi M, et al. A systematic review of localization, surgical treatment options, and outcome of insulinoma. Pancreas. 2014; 43(5): 675–686.
  110. Barthet M, Giovannini M, Lesavre N, et al. Endoscopic ultrasound-guided radiofrequency ablation for pancreatic neuroendocrine tumors and pancreatic cystic neoplasms: a prospective multicenter study. Endoscopy. 2019; 51(9): 836–842.
  111. Larghi A, Rizzatti G, Rimbaş M, et al. EUS-guided radiofrequency ablation as an alternative to surgery for pancreatic neuroendocrine neoplasms: Who should we treat? Endosc Ultrasound. 2019; 8(4): 220–226.
  112. Imperatore N, de Nucci G, Mandelli ED, et al. Endoscopic ultrasound-guided radiofrequency ablation of pancreatic neuroendocrine tumors: a systematic review of the literature. Endosc Int Open. 2020; 8(12): E1759–E1764.
  113. Massironi S, Rossi RE, Zilli A, et al. A wait-and-watch approach to small pancreatic neuroendocrine tumors: prognosis and survival. Oncotarget. 2016; 7(14): 18978–18983.
  114. Regenet N, Carrere N, Boulanger G, et al. Is the 2-cm size cutoff relevant for small nonfunctioning pancreatic neuroendocrine tumors: A French multicenter study. Surgery. 2016; 159(3): 901–907.
  115. Keutgen XM, Nilubol N, Glanville J, et al. Resection of primary tumor site is associated with prolonged survival in metastatic nonfunctioning pancreatic neuroendocrine tumors. Surgery. 2016; 159(1): 311–318.
  116. Cloyd JM, Wiseman JT, Pawlik TM. Surgical management of pancreatic neuroendocrine liver metastases. J Gastrointest Oncol. 2020; 11(3): 590–600.
  117. Watzka FM, Fottner C, Miederer M, et al. Surgical therapy of neuroendocrine neoplasm with hepatic metastasis: patient selection and prognosis. Langenbecks Arch Surg. 2015; 400(3): 349–358.
  118. Bacchetti S, Pasqual EM, Bertozzi S, et al. Curative versus palliative surgical resection of liver metastases in patients with neuroendocrine tumors: a meta-analysis of observational studies. Gland Surg. 2014; 3(4): 243–251.
  119. Birnbaum DJ, Turrini O, Vigano L, et al. Surgical management of advanced pancreatic neuroendocrine tumors: short-term and long-term results from an international multi-institutional study. Ann Surg Oncol. 2015; 22(3): 1000–1007.
  120. Almond LM, Hodson J, Ford SJ, et al. Role of palliative resection of the primary tumour in advanced pancreatic and small intestinal neuroendocrine tumours: A systematic review and meta-analysis. Eur J Surg Oncol. 2017; 43(10): 1808–1815.
  121. Hüttner FJ, Schneider L, Tarantino I, et al. Palliative resection of the primary tumor in 442 metastasized neuroendocrine tumors of the pancreas: a population-based, propensity score-matched survival analysis. Langenbecks Arch Surg. 2015; 400(6): 715–723.
  122. Berner AM, Pipinikas C, Ryan A, et al. Diagnostic Approaches to Neuroendocrine Neoplasms of Unknown Primary Site. Neuroendocrinology. 2020; 110(7-8): 563–573.
  123. Wang YZ, Chauhan A, Rau J, et al. Neuroendocrine tumors (NET) of unknown primary: is early surgical exploration and aggressive debulking justifiable? Chin Clin Oncol. 2016; 5(1): 4.
  124. Kianmanesh R, Ruszniewski P, Rindi G, et al. Palma de Mallorca Consensus Conference Participants. ENET consensus guidelines for the management of peritoneal carcinomatosis from neuroendocrine tumors. Neuroendocrinology. 2010; 91(4): 333–340.
  125. de Mestier L, Lardière-Deguelte S, Brixi H, et al. Updating the surgical management of peritoneal carcinomatosis in patients with neuroendocrine tumors. Neuroendocrinology. 2015; 101(2): 105–111.
  126. Cidon EU. New therapeutic approaches to metastatic gastroenteropancreatic neuroendocrine tumors: A glimpse into the future. World J Gastrointest Oncol. 2017; 9(1): 4–20.
  127. Madani A, Thomassen I, van Gestel YRBM, et al. Peritoneal Metastases from Gastroenteropancreatic Neuroendocrine Tumors: Incidence, Risk Factors and Prognosis. Ann Surg Oncol. 2017; 24(8): 2199–2205.
  128. Sorbye H, Welin S, Langer SW, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013; 24(1): 152–160.
  129. Du S, Ni J, Weng L, et al. Aggressive Locoregional Treatment Improves the Outcome of Liver Metastases from Grade 3 Gastroenteropancreatic Neuroendocrine Tumors. Medicine (Baltimore). 2015; 94(34): e1429.
  130. Haugvik SP, Kaemmerer D, Gaujoux S, et al. Pathology and Surgical Treatment of High-Grade Pancreatic Neuroendocrine Carcinoma: an Evolving Landscape. Curr Oncol Rep. 2016; 18(5): 28.
  131. Lakhtakia S, Seo DW. Endoscopic ultrasonography-guided tumor ablation. Dig Endosc. 2017; 29(4): 486–494.
  132. Bispo M, Caldeira A, Leite S, et al. Endoscopic Ultrasound-Guided Ablation of Focal Pancreatic Lesions: The GRUPUGE Perspective. GE Port J Gastroenterol. 2020; 27(6): 410–416.
  133. Pai M, Habib N, Senturk H, et al. Endoscopic ultrasound guided radiofrequency ablation, for pancreatic cystic neoplasms and neuroendocrine tumors. World J Gastrointest Surg. 2015; 7(4): 52–59.
  134. Lakhtakia S, Ramchandani M, Galasso D, et al. EUS-guided radiofrequency ablation for management of pancreatic insulinoma by using a novel needle electrode (with videos). Gastrointest Endosc. 2016; 83(1): 234–239.
  135. Testoni SG, Healey AJ, Dietrich CF, et al. Systematic review of endoscopy ultrasound-guided thermal ablation treatment for pancreatic cancer. Endosc Ultrasound. 2020; 9(2): 83–100.
  136. Choi JH, Seo DW, Song TJ, et al. Endoscopic ultrasound-guided radiofrequency ablation for management of benign solid pancreatic tumors. Endoscopy. 2018; 50(11): 1099–1104.
  137. Kluz M, Staroń R, Krupa Ł, et al. Successful endoscopic ultrasound-guided radiofrequency ablation of a pancreatic insulinoma. Pol Arch Intern Med. 2020; 130(2): 145–146.
  138. Dąbkowski K, Gajewska P, Walter K, et al. Successful EUS-guided ethanol ablation of insulinoma, four-year follow-up. Case report and literature review. Endokrynol Pol. 2017; 68(4): 472–479.
  139. Armellini E, Crinò SF, Ballarè M, et al. Endoscopic ultrasound-guided ethanol ablation of pancreatic neuroendocrine tumours: A case study and literature review. World J Gastrointest Endosc. 2016; 8(3): 192–197.
  140. Ashida R. EUS-guided ethanol ablation for small pancreatic neuroendocrine neoplasm. Dig Endosc. 2020; 32(3): 326–327.
  141. Choi JH, Park DH, Kim MH, et al. Outcomes after endoscopic ultrasound-guided ethanol-lipiodol ablation of small pancreatic neuroendocrine tumors. Dig Endosc. 2018; 30(5): 652–658.
  142. Dumonceau JM, Tringali A, Papanikolaou IS, et al. Endoscopic biliary stenting: indications, choice of stents, and results: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline — Updated October 2017. Endoscopy. 2018; 50(9): 910–930.
  143. Caglar E, Doğusoy G, Kabasakal L, et al. Long-Term Palliative Effect of Stenting in Gastric Outlet Obstruction Due to Transarterial Chemoembolization with Yttrium-90 in a Patient with Metastatic Neuroendocrine Tumor. Clin Endosc. 2016; 49(5): 479–482.
  144. Niina Y, Ito T, Ueda K, et al. Effectiveness of endoscopic duodenal stenting for the management of patients with unresectable pancreatic cancer. Gastroenterol Hepatol Endosc. 2017; 2(1).
  145. Gralnek IM, Stanley AJ, Morris AJ, et al. Endoscopic diagnosis and management of nonvariceal upper gastrointestinal hemorrhage (NVUGIH): European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2021. Endoscopy. 2021; 53(3): 300–332.
  146. Wyse JM, Chen YI, Sahai AV. Celiac plexus neurolysis in the management of unresectable pancreatic cancer: when and how? World J Gastroenterol. 2014; 20(9): 2186–2192.
  147. Caplin ME, Pavel M, Ćwikła JB, et al. CLARINET Investigators. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014; 371(3): 224–233.
  148. Tirosh A, Stemmer SM, Solomonov E, et al. Pasireotide for malignant insulinoma. Hormones (Athens). 2016; 15(2): 271–276.
  149. Yao JC, Shah MH, Ito T, et al. RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 514–523.
  150. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 501–513.
  151. Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010; 28(1): 69–76.
  152. Yao JC, Shah MH, Ito T, et al. RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 514–523.
  153. Lombard-Bohas C, Yao JC, Hobday T, et al. Impact of prior chemotherapy use on the efficacy of everolimus in patients with advanced pancreatic neuroendocrine tumors: a subgroup analysis of the phase III RADIANT-3 trial. Pancreas. 2015; 44(2): 181–189.
  154. Bernard V, Lombard-Bohas C, Taquet MC, et al. French Group of Endocrine Tumors. Efficacy of everolimus in patients with metastatic insulinoma and refractory hypoglycemia. Eur J Endocrinol. 2013; 168(5): 665–674.
  155. Pavel M, Hainsworth J, Baudin E, et al. RADIANT-2 Study Group. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011; 378(9808): 2005–2012.
  156. Chen J, Wang C, Han J, et al. Therapeutic effect of sunitinib malate and its influence on blood glucose concentrations in a patient with metastatic insulinoma. Expert Rev Anticancer Ther. 2013; 13(6): 737–743.
  157. Okuyama H, Ikeda M, Okusaka T, et al. A Phase II Trial of Everolimus in Patients with Advanced Pancreatic Neuroendocrine Carcinoma Refractory or Intolerant to Platinum-Containing Chemotherapy (NECTOR Trial). Neuroendocrinology. 2020; 110(11-12): 988–993.
  158. EMA [LINK NIEAKTYWNY!]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!]. www.ema.europa.eu/en/documents/productinformation/afinitor-epar-product-information_en.pdf.
  159. Panzuto F, Rinzivillo M, Fazio N, et al. Real-world study of everolimus in advanced progressive neuroendocrine tumors. Oncologist. 2014; 19(9): 966–974.
  160. Pellat A, Dreyer C, Couffignal C, et al. Clinical and Biomarker Evaluations of Sunitinib in Patients with Grade 3 Digestive Neuroendocrine Neoplasms. Neuroendocrinology. 2018; 107(1): 24–31.
  161. Alonso-Gordoa T, Díez JJ, Molina J, et al. An Overview on the Sequential Treatment of Pancreatic Neuroendocrine Tumors (pNETs). Rare Cancers Ther. 2015; 3: 13–33.
  162. Grande E. Sequential treatment in disseminated well- and intermediate-differentiated pancreatic neuroendocrine tumors: Common sense or low rationale? World J Clin Oncol. 2016; 7(2): 149–154.
  163. Xu J, Shen L, Bai C, et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020; 21(11): 1489–1499.
  164. Chan JA, Stuart K, Earle CC, et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J Clin Oncol. 2012; 30(24): 2963–2968.
  165. Strosberg J, Mizuno N, Doi T, et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin Cancer Res. 2020; 26(9): 2124–2130.
  166. Klein O, Kee D, Markman B, et al. Immunotherapy of Ipilimumab and Nivolumab in Patients with Advanced Neuroendocrine Tumors: A Subgroup Analysis of the CA209-538 Clinical Trial for Rare Cancers. Clin Cancer Res. 2020; 26(17): 4454–4459.
  167. Yao JC, Strosberg J, Fazio N, et al. Spartalizumab in metastatic, well/poorly-differentiated neuroendocrine neoplasms. Endocr Relat Cancer. 2021 [Epub ahead of print].
  168. Lu M, Zhang P, Zhang Y, et al. Efficacy, Safety, and Biomarkers of Toripalimab in Patients with Recurrent or Metastatic Neuroendocrine Neoplasms: A Multiple-Center Phase Ib Trial. Clin Cancer Res. 2020; 26(10): 2337–2345.
  169. Espinosa-Olarte P, La Salvia A, Riesco-Martinez MC, et al. Chemotherapy in NEN: still has a role? Rev Endocr Metab Disord. 2021; 22(3): 595–614.
  170. Strosberg JR, Fine RL, Choi J, et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011; 117(2): 268–275.
  171. Ganetsky A, Adel NG, Do KG, et al. The efficacy of capecitabine and temozolomide for the treatment of metastatic neuroendocrine tumors: Memorial Sloan-Kettering Cancer Center experience. J Clin Oncol. 2012; 30(4): 363–363.
  172. Saif MW, Kaley K, Brennan M, et al. A retrospective study of capecitabine/temozolomide (CAPTEM) regimen in the treatment of metastatic pancreatic neuroendocrine tumors (pNETs) after failing previous therapy. JOP. 2013; 14(5): 498–501.
  173. Fine RL, Gulati AP, Krantz BA, et al. Capecitabine and temozolomide (CAPTEM) for metastatic, well-differentiated neuroendocrine cancers: The Pancreas Center at Columbia University experience. Cancer Chemother Pharmacol. 2013; 71(3): 663–670.
  174. Abbasi S, Kashashna A, Albaba H. Efficacy of capecitabine and temozolomide combination in well-differentiated neuroendocrine tumors: Jordan experience. Pancreas. 2014; 43(8): 1303–1305.
  175. Rogowski W, Wachuła E, Gorzelak A, et al. Capecitabine and temozolomide combination for treatment of high-grade, well-differentiated neuroendocrine tumour and poorly-differentiated neuroendocrine carcinoma - retrospective analysis. Endokrynol Pol. 2019; 70(4): 313–317.
  176. Chatzellis E, Angelousi A, Daskalakis K, et al. Activity and Safety of Standard and Prolonged Capecitabine/Temozolomide Administration in Patients with Advanced Neuroendocrine Neoplasms. Neuroendocrinology. 2019; 109(4): 333–345.
  177. Liu AJ, Ueberroth BE, McGarrah PW, et al. Treatment Outcomes of Well-Differentiated High-Grade Neuroendocrine Tumors. Oncologist. 2021; 26(5): 383–388.
  178. Cives M, Ghayouri M, Morse B, et al. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016; 23(9): 759–767.
  179. Kunz P, Catalano P, Nimeiri H, et al. A randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors: A trial of the ECOG-ACRIN Cancer Research Group (E2211). J Clin Oncol. 2015; 33(15_suppl): TPS4145–TPS4145.
  180. Clewemar Antonodimitrakis P, Sundin A, Wassberg C, et al. Streptozocin and 5-Fluorouracil for the Treatment of Pancreatic Neuroendocrine Tumors: Efficacy, Prognostic Factors and Toxicity. Neuroendocrinology. 2016; 103(3-4): 345–353.
  181. Aoki T, Kokudo N, Komoto I, et al. Streptozocin chemotherapy for advanced/metastatic well-differentiated neuroendocrine tumors: an analysis of a multi-center survey in Japan. J Gastroenterol. 2015; 50(7): 769–775.
  182. Cloyd JM, Omichi K, Mizuno T, et al. Preoperative Fluorouracil, Doxorubicin, and Streptozocin for the Treatment of Pancreatic Neuroendocrine Liver Metastases. Ann Surg Oncol. 2018; 25(6): 1709–1715.
  183. Krug S, Boch M, Daniel H, et al. Streptozocin-Based Chemotherapy in Patients with Advanced Neuroendocrine Neoplasms — Predictive and Prognostic Markers for Treatment Stratification. PLoS One. 2015; 10(12): e0143822.
  184. Dilz LM, Denecke T, Steffen IG, et al. Streptozocin/5-fluorouracil chemotherapy is associated with durable response in patients with advanced pancreatic neuroendocrine tumours. Eur J Cancer. 2015; 51(10): 1253–1262.
  185. Yamaguchi T, Machida N, Morizane C, et al. Multicenter retrospective analysis of systemic chemotherapy for advanced neuroendocrine carcinoma of the digestive system. Cancer Sci. 2014; 105(9): 1176–1181.
  186. Zhang P, Li J, Li J, et al. Etoposide and cisplatin versus irinotecan and cisplatin as the first-line therapy for patients with advanced, poorly differentiated gastroenteropancreatic neuroendocrine carcinoma: A randomized phase 2 study. Cancer. 2020; 126 Suppl 9: 2086–2092.
  187. Tiensuu Janson E, Knigge U, Dam G, et al. Nordic guidelines 2021 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. Acta Oncol. 2021; 60(7): 931–941.
  188. Mavi ME, Tuncel M. Treatment of Glucagonoma-Related Necrolytic Migratory Erythema With Peptide Receptor Radionuclide Therapy. Clin Nucl Med. 2021; 46(12): 1002–1003.
  189. Starr JS, Sonbol MB, Hobday TJ, et al. Peptide Receptor Radionuclide Therapy for the Treatment of Pancreatic Neuroendocrine Tumors: Recent Insights. Onco Targets Ther. 2020; 13: 3545–3555.
  190. European Society for Medical Oncology. Standard Operating Procedures (SOPs) for Authors and templates for ESMO Clinical Practice Guidelines (CPGs) and ESMO-MCBS Scores 2021. www.esmo.org/content/download/77789/1426712/file/ESMO-Clinical-Practice-Guidelines-Standard-Operating-Procedures.pdf.
  191. The National Comprehensive Cancer Network. About the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) 2020. www.nccn.org/professionals/default.aspx.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl