open access

Vol 73, No 3 (2022)
Guidelines / Expert consensus
Submitted: 2022-04-24
Accepted: 2022-04-25
Published online: 2022-06-30
Get Citation

Update of the diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours) [Aktualizacja zaleceń ogólnych dotyczących postępowania diagnostyczno-terapeutycznego w nowotworach neuroendokrynnych układu pokarmowego (rekomendowane przez Polską Sieć Guzów Neuroendokrynnych)]

Beata Kos-Kudła1, Wanda Foltyn1, Anna Malczewska1, Tomasz Bednarczuk2, Marek Bolanowski3, Małgorzata Borowska4, Ewa Chmielik5, Jarosław B. Ćwikła6, Iwona Gisterek7, Daria Handkiewicz-Junak8, Alicja Hubalewska-Dydejczyk9, Barbara Jarząb8, Michał Jarząb10, Roman Junik11, Dariusz Kajdaniuk12, Grzegorz Kamiński13, Agnieszka Kolasińska-Ćwikła14, Aldona Kowalska15, Leszek Królicki16, Maciej Krzakowski17, Jolanta Kunikowska16, Katarzyna Kuśnierz18, Andrzej Lewiński19, Łukasz Liszka20, Magdalena Londzin-Olesik1, Bogdan Marek12, Anna Nasierowska-Guttmejer21, Ewa Nowakowska-Duława22, Marianne E. Pavel23, Joanna Pilch-Kowalczyk24, Jarosław Reguła25, Violetta Rosiek1, Marek Ruchała26, Grażyna Rydzewska27, Lucyna Siemińska12, Anna Sowa-Staszczak9, Teresa Starzyńska28, Zoran Stojčev29, Janusz Strzelczyk1, Michał Studniarek30, Anhelli Syrenicz31, Marek Szczepkowski32, Ewa Wachuła33, Wojciech Zajęcki4, Anna Zemczak1, Wojciech Zgliczyński34, Krzysztof Zieniewicz35
·
Pubmed: 36059171
·
Endokrynol Pol 2022;73(3):387-454.
Affiliations
  1. Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
  2. Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
  3. Chair and Department of Endocrinology, Diabetes, and Isotope Therapy, Medical University of Wroclaw, Wroclaw, Poland
  4. Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, Katowice, Poland
  5. Tumor Pathology Department, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
  6. Department of Cardiology and Internal Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
  7. Chair of Oncology and Radiotherapy, Medical University of Silesia, Katowice, Poland
  8. Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Gliwice Brench, Gliwice, Poland
  9. Chair and Department of Endocrinology, Jagiellonian University Medical College, Cracow, Poland
  10. Breast Unit, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
  11. Department of Endocrinology and Diabetology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
  12. Division of Pathophysiology, Department of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
  13. Department of Endocrinology and Radioisotope Therapy, Military Institute of Medicine, Warsaw, Poland
  14. Department of Oncology and Radiotherapy, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Warsaw, Poland
  15. Department of Endocrinology, Holycross Cancer Centre, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
  16. Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
  17. Department of Lung Cancer and Thoracic Tumours, Maria Sklodowska-Curie Memorial, National Research Institute of Oncology, Warsaw, Poland
  18. Department of Gastrointestinal Surgery, Medical University of Silesia, Katowice, Poland
  19. Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Lodz, Poland
  20. Department of Pathomorphology and Molecular Diagnostics, Medical University of Silesia, Katowice, Poland
  21. Faculty of Medicine, Lazarski University in Warsaw, Warsaw, Poland
  22. Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice, Poland
  23. Department of Medicine 1, Endocrinology and Diabetology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
  24. Department of Radiology and Nuclear Medicine, Medical University of Silesia, Katowice, Poland;
  25. Department of Oncological Gastroenterology, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Warsaw, Poland
  26. Department of Endocrinology, Metabolism and Internal Diseases, Medical University in Poznan, Poznan, Poland
  27. Department of Internal Medicine and Gastroenterology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
  28. Department of Gastroenterology, Medical Pomeranian University in Szczecin, Szczecin, Poland
  29. Department of Oncology and Breast Diseases, Centre of Postgraduate Medical Education, Warsaw, Poland
  30. Department of Radiology, Medical University of Gdansk, Gdansk, Poland
  31. Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
  32. Clinical Department of Colorectal, General and Oncological Surgery, Centre of Postgraduate Medical Education, Warsaw, Poland
  33. Department of Clinical Oncology, Gdynia Oncology Centre of the Polish Red Cross Maritime Hospital, Gdynia, Poland
  34. Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
  35. Chair and Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, Warsaw, Poland

open access

Vol 73, No 3 (2022)
Guidelines
Submitted: 2022-04-24
Accepted: 2022-04-25
Published online: 2022-06-30

Abstract

Continuous progress in the diagnostics and treatment of neuroendocrine neoplasms (NENs), the emerging results of new clinical trials, and the new guidelines issued by medical societies have prompted experts from the Polish Network of Neuroendocrine Tumours to update the 2017 recommendations regarding the management of neuroendocrine neoplasms.

This article presents the general recommendations for the management of NENs, resulting from the findings of the experts participating in the Fourth Round Table Conference, entitled “Polish Guidelines for the Diagnostics and Treatment of Neuroendocrine Neoplasms of the gastrointestinal tract, Żelechów, June 2021”. Drawing from the extensive experience of centres treating these cancers, we hope that we have managed to formulate the optimal method of treating patients with NENs, applying the latest reports and achievements in the field of medicine, which can be effectively implemented in our country.

The respective parts of this work present the approach to the management of: NENs of the stomach and duodenum
(including gastrinoma), pancreas, small intestine, and appendix, as well as large intestine. 

Abstract

Continuous progress in the diagnostics and treatment of neuroendocrine neoplasms (NENs), the emerging results of new clinical trials, and the new guidelines issued by medical societies have prompted experts from the Polish Network of Neuroendocrine Tumours to update the 2017 recommendations regarding the management of neuroendocrine neoplasms.

This article presents the general recommendations for the management of NENs, resulting from the findings of the experts participating in the Fourth Round Table Conference, entitled “Polish Guidelines for the Diagnostics and Treatment of Neuroendocrine Neoplasms of the gastrointestinal tract, Żelechów, June 2021”. Drawing from the extensive experience of centres treating these cancers, we hope that we have managed to formulate the optimal method of treating patients with NENs, applying the latest reports and achievements in the field of medicine, which can be effectively implemented in our country.

The respective parts of this work present the approach to the management of: NENs of the stomach and duodenum
(including gastrinoma), pancreas, small intestine, and appendix, as well as large intestine. 

Get Citation

Keywords

gastro-entero-pancreatic neuroendocrine neoplasms; diagnostics; treatment

Supp./Additional Files (2)
Supplementary File [Materiały dodatkowe] — Tab. S1 and S2
Download
81KB
Conflict of Interests [Konflikt interesów]
Download
429KB
About this article
Title

Update of the diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours) [Aktualizacja zaleceń ogólnych dotyczących postępowania diagnostyczno-terapeutycznego w nowotworach neuroendokrynnych układu pokarmowego (rekomendowane przez Polską Sieć Guzów Neuroendokrynnych)]

Journal

Endokrynologia Polska

Issue

Vol 73, No 3 (2022)

Article type

Guidelines / Expert consensus

Pages

387-454

Published online

2022-06-30

Page views

7466

Article views/downloads

3162

DOI

10.5603/EP.a2022.0049

Pubmed

36059171

Bibliographic record

Endokrynol Pol 2022;73(3):387-454.

Keywords

gastro-entero-pancreatic neuroendocrine neoplasms
diagnostics
treatment

Authors

Beata Kos-Kudła
Wanda Foltyn
Anna Malczewska
Tomasz Bednarczuk
Marek Bolanowski
Małgorzata Borowska
Ewa Chmielik
Jarosław B. Ćwikła
Iwona Gisterek
Daria Handkiewicz-Junak
Alicja Hubalewska-Dydejczyk
Barbara Jarząb
Michał Jarząb
Roman Junik
Dariusz Kajdaniuk
Grzegorz Kamiński
Agnieszka Kolasińska-Ćwikła
Aldona Kowalska
Leszek Królicki
Maciej Krzakowski
Jolanta Kunikowska
Katarzyna Kuśnierz
Andrzej Lewiński
Łukasz Liszka
Magdalena Londzin-Olesik
Bogdan Marek
Anna Nasierowska-Guttmejer
Ewa Nowakowska-Duława
Marianne E. Pavel
Joanna Pilch-Kowalczyk
Jarosław Reguła
Violetta Rosiek
Marek Ruchała
Grażyna Rydzewska
Lucyna Siemińska
Anna Sowa-Staszczak
Teresa Starzyńska
Zoran Stojčev
Janusz Strzelczyk
Michał Studniarek
Anhelli Syrenicz
Marek Szczepkowski
Ewa Wachuła
Wojciech Zajęcki
Anna Zemczak
Wojciech Zgliczyński
Krzysztof Zieniewicz

References (307)
  1. Pavel M, Öberg K, Falconi M, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020; 31(7): 844–860.
  2. Ramage JK, De Herder WW, Delle Fave G, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for Colorectal Neuroendocrine Neoplasms. Neuroendocrinology. 2016; 103(2): 139–143.
  3. Dasari A, Shen C, Halperin D, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017; 3(10): 1335–1342.
  4. Kos-Kudła B, Blicharz-Dorniak J, Strzelczyk J, et al. Diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2017; 68(2): 79–110.
  5. Öberg K, Knigge U, Kwekkeboom D, et al. ESMO Guidelines Working Group. Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012; 23 Suppl 7: vii124–vii130.
  6. Yao JC, Hassan M, Phan A, et al. One hundred years after "carcinoid": epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008; 26(18): 3063–3072.
  7. Kos-Kudła B, Blicharz-Dorniak J, Handkiewicz-Junak D, et al. Consensus Conference, Polish Network of Neuroendocrine Tumours. Diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2013; 64(6): 418–443.
  8. Plöckinger U, Rindi G, Arnold R, et al. European Neuroendocrine Tumour Society. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology. 2004; 80(6): 394–424.
  9. Glinicki P, Kapuścińska R, Jeske W. The differences in chromogranin A (CgA) concentrations measured in serum and in plasma by IRMA and ELISA methods. Endokrynol Pol. 2010; 61(4): 346–350.
  10. Baudin E, Gigliotti A, Ducreux M, et al. Neuron-specific enolase and chromogranin A as markers of neuroendocrine tumours. Br J Cancer. 1998; 78(8): 1102–1107.
  11. Yao JC, Pavel M, Phan AT, et al. Chromogranin A and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. J Clin Endocrinol Metab. 2011; 96(12): 3741–3749.
  12. Glinicki P, Jeske W, Glinicki P, et al. Chromogranin A (CgA)--the influence of various factors in vivo and in vitro, and existing disorders on it's concentration in blood. Endokrynol Pol. 2010; 61(4): 384–387.
  13. Ćwikła JB, Bodei L, Kolasinska-Ćwikła A, et al. Circulating Transcript Analysis (NETest) in GEP-NETs Treated With Somatostatin Analogs Defines Therapy. J Clin Endocrinol Metab. 2015; 100(11): E1437–E1445.
  14. Modlin IM, Drozdov I, Alaimo D, et al. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection. Endocr Relat Cancer. 2014; 21(4): 615–628.
  15. Modlin IM, Frilling A, Salem RR, et al. Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. Surgery. 2016; 159(1): 336–347.
  16. Miller HC, Frampton AE, Malczewska A, et al. MicroRNAs associated with small bowel neuroendocrine tumours and their metastases. Endocr Relat Cancer. 2016; 23(9): 711–726.
  17. Malczewska A, Frampton AE, Mato Prado M, et al. Circulating MicroRNAs in Small-bowel Neuroendocrine Tumors: A Potential Tool for Diagnosis and Assessment of Effectiveness of Surgical Resection. Ann Surg. 2021; 274(1): e1–e9.
  18. Malczewska A, Kidd M, Matar S, et al. A Comprehensive Assessment of the Role of miRNAs as Biomarkers in Gastroenteropancreatic Neuroendocrine Tumors. Neuroendocrinology. 2018; 107(1): 73–90.
  19. Ramage JK, Ahmed A, Ardill J, et al. UK and Ireland Neuroendocrine Tumour Society. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut. 2012; 61(1): 6–32.
  20. Telega A, Kos-Kudła B, Foltyn W, et al. Selected neuroendocrine tumour markers, growth factors and their receptors in typical and atypical bronchopulmonary carcinoids. Endokrynol Pol. 2012; 63(6): 477–482.
  21. Gaztambide S, Vazquez F, Castaño L. Diagnosis and treatment of multiple endocrine neoplasia type 1 (MEN1). Minerva Endocrinol. 2013; 38(1): 17–28.
  22. Kajdaniuk D, Marek B, Borgiel-Marek H, et al. Transforming growth factor β1 (TGFβ1) in physiology and pathology. Endokrynol Pol. 2013; 64(5): 384–396.
  23. Bednarczuk T, Zemczak A, Bolanowski M, et al. Neuroendocrine neoplasms of the small intestine and the appendix — update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 549–567.
  24. Niederle B, Pape UF, Costa F, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for Neuroendocrine Neoplasms of the Jejunum and Ileum. Neuroendocrinology. 2016; 103(2): 125–138.
  25. Witkowska A, Jańczyk A, Nyckowski P, et al. Elevated serum chromogranin A patient with incidentally detected tumors in the caudate lobe of the liver plan. Endokrynol Pol. 2012; 63(Suppl 3): 7–8.
  26. Bhattacharyya S, Toumpanakis C, Caplin ME, et al. Analysis of 150 patients with carcinoid syndrome seen in a single year at one institution in the first decade of the twenty-first century. Am J Cardiol. 2008; 101(3): 378–381.
  27. Korse CM, Taal BG, de Groot CA, et al. Chromogranin-A and N-terminal pro-brain natriuretic peptide: an excellent pair of biomarkers for diagnostics in patients with neuroendocrine tumor. J Clin Oncol. 2009; 27(26): 4293–4299.
  28. Kos-Kudła B, Zemczak A. Contemporary methods of diagnosis and treatment of neuroendocrine gastrointestinal tumors. Endokrynol Pol. 2006; 57(2): 174–186.
  29. Malczewska A, Kos-Kudła B, Kidd M, et al. The clinical applications of a multigene liquid biopsy (NETest) in neuroendocrine tumors. Adv Med Sci. 2020; 65(1): 18–29.
  30. Modlin IM, Kidd M, Malczewska A, et al. The NETest: The Clinical Utility of Multigene Blood Analysis in the Diagnosis and Management of Neuroendocrine Tumors. Endocrinol Metab Clin North Am. 2018; 47(3): 485–504.
  31. Oberg K, Krenning E, Sundin A, et al. A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management. Endocr Connect. 2016; 5(5): 174–187.
  32. Modlin IM, Drozdov I, Kidd M. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLoS One. 2013; 8(5): e63364.
  33. Malczewska A, Procner A, Walter A, et al. The NETest liquid biopsy is diagnostic for gastric neuroendocrine tumors: observations on the blood-based identification of microscopic and macroscopic residual diseaseOK. BMC Gastroenterol. 2020; 20(1): 235.
  34. Malczewska A, Bodei L, Kidd M, et al. Blood mRNA Measurement (NETest) for Neuroendocrine Tumor Diagnosis of Image-Negative Liver Metastatic Disease. J Clin Endocrinol Metab. 2019; 104(3): 867–872.
  35. Modlin IM, Kidd M, Falconi M, et al. A multigenomic liquid biopsy biomarker for neuroendocrine tumor disease outperforms CgA and has surgical and clinical utility. Ann Oncol. 2021; 32(11): 1425–1433.
  36. Bodei L, Kidd MS, Singh A, et al. PRRT neuroendocrine tumor response monitored using circulating transcript analysis: the NETest. Eur J Nucl Med Mol Imaging. 2020; 47(4): 895–906.
  37. Pavel M, Jann H, Prasad V, et al. NET Blood Transcript Analysis Defines the Crossing of the Clinical Rubicon: When Stable Disease Becomes Progressive. Neuroendocrinology. 2017; 104(2): 170–182.
  38. Modlin I, Kidd M, Bodei L, et al. Circulating biomarkers of gastroenteropancreatic and lung neuroendocrine neoplasms: “The times they are a changin”. Curr Opin Endocrine Metab Res. 2021; 18: 243–253.
  39. van Treijen MJC, Korse CM, van Leeuwaarde RS, et al. Blood Transcript Profiling for the Detection of Neuroendocrine Tumors: Results of a Large Independent Validation Study. Front Endocrinol (Lausanne). 2018; 9: 740.
  40. Bodei L, Kidd MS, Singh A, et al. PRRT genomic signature in blood for prediction of Lu-octreotate efficacy. Eur J Nucl Med Mol Imaging. 2018; 45(7): 1155–1169.
  41. Bodei L, Kidd M, Modlin IM, et al. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2016; 43(5): 839–851.
  42. Öberg K, Califano A, Strosberg JR, et al. A meta-analysis of the accuracy of a neuroendocrine tumor mRNA genomic biomarker (NETest) in blood. Ann Oncol. 2020; 31(2): 202–212.
  43. Malczewska A, Witkowska M, Makulik K, et al. NETest liquid biopsy is diagnostic of small intestine and pancreatic neuroendocrine tumors and correlates with imaging. Endocr Connect. 2019; 8(4): 442–453.
  44. Malczewska A, Oberg K, Bodei L, et al. NETest Liquid Biopsy Is Diagnostic of Lung Neuroendocrine Tumors and Identifies Progressive Disease. Neuroendocrinology. 2019; 108(3): 219–231.
  45. Modlin IM, Kidd M, Filosso PL, et al. Molecular strategies in the management of bronchopulmonary and thymic neuroendocrine neoplasms. J Thorac Dis. 2017; 9(Suppl 15): S1458–S1473.
  46. Filosso PL, Kidd M, Roffinella M, et al. The utility of blood neuroendocrine gene transcript measurement in the diagnosis of bronchopulmonary neuroendocrine tumours and as a tool to evaluate surgical resection and disease progression. Eur J Cardiothorac Surg. 2018; 53(3): 631–639.
  47. Pęczkowska M, Cwikla J, Kidd M, et al. The clinical utility of circulating neuroendocrine gene transcript analysis in well-differentiated paragangliomas and pheochromocytomas. Eur J Endocrinol. 2017; 176(2): 143–157.
  48. Malczewska A, Witkowska M, Wójcik-Giertuga M, et al. Prospective Evaluation of the NETest as a Liquid Biopsy for Gastroenteropancreatic and Bronchopulmonary Neuroendocrine Tumors: An ENETS Center of Excellence Experience. Neuroendocrinology. 2021; 111(4): 304–319.
  49. Malczewska A, Oberg K, Kos-Kudla B. NETest is superior to chromogranin A in neuroendocrine neoplasia: a prospective ENETS CoE analysis. Endocr Connect. 2021; 10(1): 110–123.
  50. Malczewska A, Kidd M, Matar S, et al. An Assessment of Circulating Chromogranin A as a Biomarker of Bronchopulmonary Neuroendocrine Neoplasia: A Systematic Review and Meta-Analysis. Neuroendocrinology. 2020; 110(3-4): 198–216.
  51. Matar S, Malczewska A, Oberg K, et al. Blood Chromogranin A Is Not Effective as a Biomarker for Diagnosis or Management of Bronchopulmonary Neuroendocrine Tumors/Neoplasms. Neuroendocrinology. 2020; 110(3-4): 185–197.
  52. Rydzewska G, Strzelczyk J, Bednarczuk T, et al. Gastroduodenal neuroendocrine neoplasms including gastrinoma — update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 455–473.
  53. Starzyńska T, Londzin-Olesik M, Bednarczuk T, et al. Colorectal neuroendocrine neoplasms — update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 584–598.
  54. Kos-Kudła B, Rosiek V, Borowska M, et al. Pancreatic neuroendocrine neoplasms — update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 491–521.
  55. WHO Classification of Tumours. Digestive System Tumours. IARC, France 2019.
  56. WHO Blue Books. https://whobluebooks.iarc.fr/.
  57. Rindi G, de Herder WW, O'Toole D, et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumors: why such guidelines and how we went about It. Neuroendocrinology. 2006; 84(3): 155–157.
  58. Rindi G, de Herder WW, O'Toole D, et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumors: the second event and some final considerations. Neuroendocrinology. 2008; 87(1): 5–7.
  59. Rindi G, Klöppel G, Alhman H, et al. all other Frascati Consensus Conference participants, European Neuroendocrine Tumor Society (ENETS). TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006; 449(4): 395–401.
  60. Deroose CM, Hindié E, Kebebew E, et al. Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J Nucl Med. 2016; 57(12): 1949–1956.
  61. Ito T, Jensen RT. Molecular imaging in neuroendocrine tumors: recent advances, controversies, unresolved issues, and roles in management. Curr Opin Endocrinol Diabetes Obes. 2017; 24(1): 15–24.
  62. Opalińska M, Hubalewska-Dydejczyk A, Sowa-Staszczak A, et al. NEN — the role of somatostatin receptor scintigraphy in clinical setting. Nucl Med Rev Cent East Eur. 2016; 19(2): 118–125.
  63. Fanti S, Ambrosini V, Tomassetti P, et al. Evaluation of unusual neuroendocrine tumours by means of 68Ga-DOTA-NOC PET. Biomed Pharmacother. 2008; 62(10): 667–671.
  64. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007; 48(4): 508–518.
  65. Kwekkeboom DJ, Krenning EP, Scheidhauer K, et al. Mallorca Consensus Conference participants, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: somatostatin receptor imaging with (111)In-pentetreotide. Neuroendocrinology. 2009; 90(2): 184–189.
  66. Sundin A, Vullierme MP, Kaltsas G, et al. Mallorca Consensus Conference participants, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological examinations. Neuroendocrinology. 2009; 90(2): 167–183.
  67. Walczyk J, Sowa-Staszczak A. Diagnostic imaging of gastrointestinal neuroendocrine neoplasms with a focus on ultrasound. J Ultrason. 2019; 19(78): 228–235.
  68. Chiti A, Fanti S, Savelli G, et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur J Nucl Med. 1998; 25(10): 1396–1403.
  69. Anderson MA, Carpenter S, Thompson NW, et al. Endoscopic ultrasound is highly accurate and directs management in patients with neuroendocrine tumors of the pancreas. Am J Gastroenterol. 2000; 95(9): 2271–2277.
  70. Gouya H, Vignaux O, Augui J, et al. CT, endoscopic sonography, and a combined protocol for preoperative evaluation of pancreatic insulinomas. AJR Am J Roentgenol. 2003; 181(4): 987–992.
  71. Del Prete M, Di Sarno A, Modica R, et al. ENETS Centre of Excellence Multidisciplinary Group for Neuroendocrine Tumors in Naples (Italy). Role of contrast-enhanced ultrasound to define prognosis and predict response to biotherapy in pancreatic neuroendocrine tumors. J Endocrinol Invest. 2017; 40(12): 1373–1380.
  72. Giesel FL, Wulfert S, Zechmann CM, et al. Contrast-enhanced ultrasound monitoring of perfusion changes in hepatic neuroendocrine metastases after systemic versus selective arterial 177Lu/90Y-DOTATOC and 213Bi-DOTATOC radiopeptide therapy. Exp Oncol. 2013; 35(2): 122–126.
  73. Hoeffel C, Job L, Ladam-Marcus V, et al. Detection of hepatic metastases from carcinoid tumor: prospective evaluation of contrast-enhanced ultrasonography. Dig Dis Sci. 2009; 54(9): 2040–2046.
  74. Kim S, Marcus R, Wells ML, et al. The evolving role of imaging for small bowel neuroendocrine neoplasms: estimated impact of imaging and disease-free survival in a retrospective observational study. Abdom Radiol (NY). 2020; 45(3): 623–631.
  75. Puli SR, Kalva N, Bechtold ML, et al. Diagnostic accuracy of endoscopic ultrasound in pancreatic neuroendocrine tumors: a systematic review and meta analysis. World J Gastroenterol. 2013; 19(23): 3678–3684.
  76. Manta R, Nardi E, Pagano N, et al. Pre-operative Diagnosis of Pancreatic Neuroendocrine Tumors with Endoscopic Ultrasonography and Computed Tomography in a Large Series. J Gastrointestin Liver Dis. 2016; 25(3): 317–321.
  77. Chen HT, Xu GQ, Teng XD, et al. Diagnostic accuracy of endoscopic ultrasonography for rectal neuroendocrine neoplasms. World J Gastroenterol. 2014; 20(30): 10470–10477.
  78. Nelson H, Petrelli N, Carlin A, et al. National Cancer Institute Expert Panel. Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst. 2001; 93(8): 583–596.
  79. Hiramoto JS, Feldstein VA, LaBerge JM, et al. Intraoperative ultrasound and preoperative localization detects all occult insulinomas; discussion 1025-6. Arch Surg. 2001; 136(9): 1020–1025.
  80. Marcal LP, Patnana M, Bhosale P, et al. Intraoperative abdominal ultrasound in oncologic imaging. World J Radiol. 2013; 5(3): 51–60.
  81. Mörk H, Ignee A, Schuessler G, et al. Analysis of neuroendocrine tumour metastases in the liver using contrast enhanced ultrasonography. Scand J Gastroenterol. 2007; 42(5): 652–662.
  82. Yamao K, Nakamura T, Suzuki T, et al. Endoscopic diagnosis and staging of mucinous cystic neoplasms and intraductal papillary-mucinous tumors. J Hepatobiliary Pancreat Surg. 2003; 10(2): 142–146.
  83. Sun Bo, Hu B. The role of intraductal ultrasonography in pancreatobiliary diseases. Endosc Ultrasound. 2016; 5(5): 291–299.
  84. Yasuda K, Sakata M, Ueda M, et al. The use of pancreatoscopy in the diagnosis of intraductal papillary mucinous tumor lesions of the pancreas. Clin Gastroenterol Hepatol. 2005; 3(7_Suppl 1): s53–s57.
  85. National Comprehensive Cancer Network Guidelines. Neuroendocrine and Adrenal Tumors (Version 3.2021). https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1448.
  86. Scherübl H, Cadiot G, Jensen RT, et al. Neuroendocrine tumors of the stomach (gastric carcinoids) are on the rise: small tumors, small problems? Endoscopy. 2010; 42(8): 664–671.
  87. Attili F, Capurso G, Vanella G, et al. Diagnostic and therapeutic role of endoscopy in gastroenteropancreatic neuroendocrine neoplasms. Dig Liver Dis. 2014; 46(1): 9–17.
  88. Ito T, Hijioka S, Masui T, et al. Advances in the diagnosis and treatment of pancreatic neuroendocrine neoplasms in Japan. J Gastroenterol. 2017; 52(1): 9–18.
  89. Cerwenka H. Neuroendocrine liver metastases: contributions of endoscopy and surgery to primary tumor search. World J Gastroenterol. 2012; 18(10): 1009–1014.
  90. Wang SC, Parekh JR, Zuraek MB, et al. Identification of unknown primary tumors in patients with neuroendocrine liver metastases. Arch Surg. 2010; 145(3): 276–280.
  91. Frilling A, Smith G, Clift AK, et al. Capsule endoscopy to detect primary tumour site in metastatic neuroendocrine tumours. Dig Liver Dis. 2014; 46(11): 1038–1042.
  92. van Tuyl SAC, van Noorden JT, Timmer R, et al. Detection of small-bowel neuroendocrine tumors by video capsule endoscopy. Gastrointest Endosc. 2006; 64(1): 66–72.
  93. Neumann H, Fry LC, Neurath MF. Review article on current applications and future concepts of capsule endoscopy. Digestion. 2013; 87(2): 91–99.
  94. Blicharz-Dorniak J, Kos-Kudła B, Foltyn W, et al. Is determination of matrix metalloproteinases and their tissue inhibitors serum concentrations useful in patients with gastroenteropancreatic and bronchopulmonary neuroendocrine neoplasms? Endokrynol Pol. 2012; 63(6): 470–476.
  95. Zagorowicz ES, Pietrzak AM, Wronska E, et al. Small bowel tumors detected and missed during capsule endoscopy: single center experience. World J Gastroenterol. 2013; 19(47): 9043–9048.
  96. Fukumoto A, Manabe N, Tanaka S, et al. Usefulness of EUS with double-balloon enteroscopy for diagnosis of small-bowel diseases. Gastrointest Endosc. 2007; 65(3): 412–420.
  97. Kosmala W, Milewski J, Rydzewska G. Cztery lata doświadczeń w enteroskopii dwubalonowej na świecie. Przegl Gastroenterol. 2007; 2: 305–310.
  98. Milewski J, Rydzewska G. Enteroskopia dwubalonowa — nowa technika diagnostyki i terapii endoskopowej chorób jelita cienkiego. Przegl Gastroenterol. 2006; 1: 54–59.
  99. Domagk D, Bretthauer M, Lenz P, et al. Carbon dioxide insufflation improves intubation depth in double-balloon enteroscopy: a randomized, controlled, double-blind trial. Endoscopy. 2007; 39(12): 1064–1067.
  100. Ethun CG, Postlewait LM, Baptiste GG, et al. Small bowel neuroendocrine tumors: A critical analysis of diagnostic work-up and operative approach. J Surg Oncol. 2016; 114(6): 671–676.
  101. Sulbaran M, de Moura E, Bernardo W, et al. Overtube-assisted enteroscopy and capsule endoscopy for the diagnosis of small-bowel polyps and tumors: a systematic review and meta-analysis. Endosc Int Open. 2016; 4(2): E151–E163.
  102. Leszczyński S, Pilch-Kowalczyk J. Diagnostyka obrazowa. Układ trawienny. PZWL, Warszawa 2012.
  103. Olson MC, Navin PJ, Welle CL, et al. Small bowel radiology. Curr Opin Gastroenterol. 2021; 37(3): 267–274.
  104. Barlow JM, Goss BC, Hansel SL, et al. CT enterography: technical and interpretive pitfalls. Abdom Imaging. 2015; 40(5): 1081–1096.
  105. Minordi LM, Binda C, Scaldaferri F, et al. Primary neoplasms of the small bowel at CT: a pictorial essay for the clinician. Eur Rev Med Pharmacol Sci. 2018; 22(3): 598–608.
  106. Grazzini G, Danti G, Cozzi D, et al. Diagnostic imaging of gastrointestinal neuroendocrine tumours (GI-NETs): relationship between MDCT features and 2010 WHO classification. Radiol Med. 2019; 124(2): 94–102.
  107. Shinya T, Inai R, Tanaka T, et al. Small bowel neoplasms: enhancement patterns and differentiation using post-contrast multiphasic multidetector CT. Abdom Radiol (NY). 2017; 42(3): 794–801.
  108. Fidler JL, Fletcher JG, Reading CC, et al. Preoperative detection of pancreatic insulinomas on multiphasic helical CT. AJR Am J Roentgenol. 2003; 181(3): 775–780.
  109. Procacci C, Carbognin G, Accordini S, et al. Nonfunctioning endocrine tumors of the pancreas: possibilities of spiral CT characterization. Eur Radiol. 2001; 11(7): 1175–1183.
  110. Takumi K, Fukukura Y, Higashi M, et al. Pancreatic neuroendocrine tumors: Correlation between the contrast-enhanced computed tomography features and the pathological tumor grade. Eur J Radiol. 2015; 84(8): 1436–1443.
  111. Baur ADJ, Pavel M, Prasad V, et al. Diagnostic imaging of pancreatic neuroendocrine neoplasms (pNEN): tumor detection, staging, prognosis, and response to treatment. Acta Radiol. 2016; 57(3): 260–270.
  112. Cwikła JB, Buscombe JR, Caplin ME, et al. Diagnostic imaging of carcinoid metastases to the abdomen and pelvis. Med Sci Monit. 2004; 10(Suppl 3): 9–16.
  113. Kumbasar B, Kamel IR, Tekes A, et al. Imaging of neuroendocrine tumors: accuracy of helical CT versus SRS. Abdom Imaging. 2004; 29(6): 696–702.
  114. Kaltenbach B, Wichmann JL, Pfeifer S, et al. Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT. Eur J Radiol. 2018; 105: 20–24.
  115. de Mestier L, Dromain C, d'Assignies G, et al. Evaluating digestive neuroendocrine tumor progression and therapeutic responses in the era of targeted therapies: state of the art. Endocr Relat Cancer. 2014; 21(3): R105–R120.
  116. Lebda-Wyborny T, Barczyk A, Pilch-Kowalczyk J. Wirtualna kolonoskopia CT — nowa metoda oceny patologii jelita grubego. Chirurgia Polska. 2008; 10(2): 89–101.
  117. Johnson CD, Chen MH, Toledano AY, et al. Accuracy of CT colonography for detection of large adenomas and cancers. N Engl J Med. 2008; 359(12): 1207–1217.
  118. Regge D, Laudi C, Galatola G, et al. Diagnostic accuracy of computed tomographic colonography for the detection of advanced neoplasia in individuals at increased risk of colorectal cancer. JAMA. 2009; 301(23): 2453–2461.
  119. Pickhardt PJ, Yee J, Johnson CD. CT colonography: over two decades from discovery to practice. Abdom Radiol (NY). 2018; 43(3): 517–522.
  120. Elmaoglu M, Celik A. Rezonans magnetyczny, podstawy fizyczne, obrazowanie, ułożenie pacjenta, protokoły. Medipage, Warszawa 2015.
  121. Dromain C, de Baere T, Lumbroso J, et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol. 2005; 23(1): 70–78.
  122. Sankowski AJ, Ćwikla JB, Nowicki ML, et al. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement. Med Sci Monit. 2012; 18(5): MT33–MT40.
  123. Oberg K, Akerström G, Rindi G, et al. ESMO Guidelines Working Group. Neuroendocrine gastroenteropancreatic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010; 21 Suppl 5: v223–v227.
  124. Kim JH, Eun HW, Kim YJ, et al. Staging accuracy of MR for pancreatic neuroendocrine tumor and imaging findings according to the tumor grade. Abdom Imaging. 2013; 38(5): 1106–1114.
  125. Van Hoe L, Gryspeerdt S, Marchal G, et al. Helical CT for the preoperative localization of islet cell tumors of the pancreas: value of arterial and parenchymal phase images. AJR Am J Roentgenol. 1995; 165(6): 1437–1439.
  126. Howe JR, Merchant NB, Conrad C, et al. The North American Neuroendocrine Tumor Society Consensus Paper on the Surgical Management of Pancreatic Neuroendocrine Tumors. Pancreas. 2020; 49(1): 1–33.
  127. Carlbom L, Caballero-Corbalán J, Granberg D, et al. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors. Ups J Med Sci. 2017; 122(1): 43–50.
  128. Moryoussef F, de Mestier L, Belkebir M, et al. Impact of Liver and Whole-Body Diffusion-Weighted MRI for Neuroendocrine Tumors on Patient Management: A Pilot Study. Neuroendocrinology. 2017; 104(3): 264–272.
  129. Ganeshan D, Bhosale P, Yang T, et al. Imaging features of carcinoid tumors of the gastrointestinal tract. AJR Am J Roentgenol. 2013; 201(4): 773–786.
  130. Kamaoui I, De-Luca V, Ficarelli S, et al. Value of CT enteroclysis in suspected small-bowel carcinoid tumors. AJR Am J Roentgenol. 2010; 194(3): 629–633.
  131. Ambrosini V, Kunikowska J, Baudin E, et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur J Cancer. 2021; 146: 56–73.
  132. Reubi JC, Schär JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000; 27(3): 273–282.
  133. Caplin ME, Pavel M, Ćwikła JB, et al. CLARINET Investigators. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014; 371(3): 224–233.
  134. Gabriel M, Decristoforo C, Donnemiller E, et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med. 2003; 44(5): 708–716.
  135. Kunikowska J, Lewington V, Krolicki L. Optimizing Somatostatin Receptor Imaging in Patients With Neuroendocrine Tumors: The Impact of 99mTc-HYNICTOC SPECT/SPECT/CT Versus 68Ga-DOTATATE PET/CT Upon Clinical Management. Clin Nucl Med. 2017; 42(12): 905–911.
  136. Deppen SA, Blume J, Bobbey AJ, et al. 68Ga-DOTATATE Compared with 111In-DTPA-Octreotide and Conventional Imaging for Pulmonary and Gastroenteropancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. J Nucl Med. 2016; 57(6): 872–878.
  137. Milione M, Maisonneuve P, Spada F, et al. The Clinicopathologic Heterogeneity of Grade 3 Gastroenteropancreatic Neuroendocrine Neoplasms: Morphological Differentiation and Proliferation Identify Different Prognostic Categories. Neuroendocrinology. 2017; 104(1): 85–93.
  138. Kaemmerer D, Peter L, Lupp A, et al. Molecular imaging with ⁶⁸Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2011; 38(9): 1659–1668.
  139. Johnbeck CB, Knigge U, Loft A, et al. Head-to-Head Comparison of Cu-DOTATATE and Ga-DOTATOC PET/CT: A Prospective Study of 59 Patients with Neuroendocrine Tumors. J Nucl Med. 2017; 58(3): 451–457.
  140. Hubalewska-Dydejczyk A, Kulig J, Szybinski P, et al. Radio-guided surgery with the use of [99mTc-EDDA/HYNIC]octreotate in intra-operative detection of neuroendocrine tumours of the gastrointestinal tract. Eur J Nucl Med Mol Imaging. 2007; 34(10): 1545–1555.
  141. Kunikowska J, Słodkowski M, Koperski Ł, et al. Radioguided surgery in patient with pancreatic neuroendocrine tumour followed by PET/CT scan as a new approach of complete resection evaluation — case report. Nucl Med Rev Cent East Eur. 2014; 17(2): 110–114.
  142. Binderup T, Knigge U, Loft A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010; 51(5): 704–712.
  143. Severi S, Nanni O, Bodei L, et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013; 40(6): 881–888.
  144. Evangelista L, Ravelli I, Bignotto A, et al. Ga-68 DOTA-peptides and F-18 FDG PET/CT in patients with neuroendocrine tumor: A review. Clin Imaging. 2020; 67: 113–116.
  145. Kunikowska JK, Pawlak D. Is PET/CT with 18FDG necessary for qualification patients to Peptide Receptor Radionuclide Therapy (PRRT) -preliminary report ? Eur J Nucl Med Mol Imaging. 2011; 38: S425–S425.
  146. Binderup T, Knigge U, Loft A, et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010; 16(3): 978–985.
  147. Panagiotidis E, Alshammari A, Michopoulou S, et al. Comparison of the Impact of 68Ga-DOTATATE and 18F-FDG PET/CT on Clinical Management in Patients with Neuroendocrine Tumors. J Nucl Med. 2017; 58(1): 91–96.
  148. Chan DLh, Pavlakis N, Schembri GP, et al. Dual Somatostatin Receptor/FDG PET/CT Imaging in Metastatic Neuroendocrine Tumours: Proposal for a Novel Grading Scheme with Prognostic Significance. Theranostics. 2017; 7(5): 1149–1158.
  149. Mapelli P, Partelli S, Salgarello M, et al. Dual Tracer 68Ga-DOTATOC and 18F-FDG PET Improve Preoperative Evaluation of Aggressiveness in Resectable Pancreatic Neuroendocrine Neoplasms. Diagnostics (Basel). 2021; 11(2).
  150. Delpassand ES, Samarghandi A, Mourtada JS, et al. Long-Term Survival, Toxicity Profile, and role of F-18 FDG PET/CT scan in Patients with Progressive Neuroendocrine Tumors Following Peptide Receptor Radionuclide Therapy with High Activity In-111 Pentetreotide. Theranostics. 2012; 2(5): 472–480.
  151. Zemczak A, Kołodziej M, Gut P, et al. Effect of peptide receptor radionuclide therapy (PRRT) with tandem isotopes — [90Y]Y/[177Lu]Lu-DOTATATE in patients with disseminated neuroendocrine tumours depending on [18F]FDG PET/CT qualification in Polish multicentre experience - do we need [18F]FDG PET/CT for qualification to PRRT? Endokrynol Pol. 2020; 71(3): 240–248.
  152. Saleh M, Bhosale PR, Yano M, et al. New frontiers in imaging including radiomics updates for pancreatic neuroendocrine neoplasms. Abdom Radiol (NY). 2020 [Epub ahead of print].
  153. Ambrosini V, Morigi JJ, Nanni C, et al. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015; 59(1): 58–69.
  154. Balogova S, Talbot JN, Nataf V, et al. 18F-fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging. 2013; 40(6): 943–966.
  155. Bozkurt MF, Virgolini I, Balogova S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with Ga-DOTA-conjugated somatostatin receptor targeting peptides and F-DOPA. Eur J Nucl Med Mol Imaging. 2017; 44(9): 1588–1601.
  156. Timmers HJ, Chen CC, Carrasquillo JA, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009; 94(12): 4757–4767.
  157. Antwi K, Fani M, Heye T, et al. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: evaluation of diagnostic accuracy in a prospective crossover imaging study. Eur J Nucl Med Mol Imaging. 2018; 45(13): 2318–2327.
  158. Kunikowska J, Ziemnicka K, Pawlak D, et al. Medullary thyroid carcinoma - PET/CT imaging with 68Ga-labelled gastrin and somatostatin analogues. Endokrynol Pol. 2016; 67(1): 68–71.
  159. Luo Y, Yu M, Pan Q, et al. 68Ga-NOTA-exendin-4 PET/CT in detection of occult insulinoma and evaluation of physiological uptake. Eur J Nucl Med Mol Imaging. 2015; 42(3): 531–532.
  160. Sowa-Staszczak A, Pach D, Mikołajczak R, et al. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC- 99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging. 2013; 40(4): 524–531.
  161. Sowa-Staszczak A, Trofimiuk-Müldner M, Stefańska A, et al. 99mTc Labeled Glucagon-Like Peptide-1-Analogue (99mTc-GLP1) Scintigraphy in the Management of Patients with Occult Insulinoma. PLoS One. 2016; 11(8): e0160714.
  162. Zhu W, Cheng Y, Wang X, et al. Head-to-Head Comparison of Ga-DOTA-JR11 and Ga-DOTATATE PET/CT in Patients with Metastatic, Well-Differentiated Neuroendocrine Tumors: A Prospective Study. J Nucl Med. 2020; 61(6): 897–903.
  163. Nicolas GP, Schreiter N, Kaul F, et al. Sensitivity Comparison of Ga-OPS202 and Ga-DOTATOC PET/CT in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase II Imaging Study. J Nucl Med. 2018; 59(6): 915–921.
  164. Jacobson O, Weiss ID. CXCR4 chemokine receptor overview: biology, pathology and applications in imaging and therapy. Theranostics. 2013; 3(1): 1–2.
  165. Werner RA, Weich A, Higuchi T, et al. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors — a Triple Tracer Comparative Approach. Theranostics. 2017; 7(6): 1489–1498.
  166. Panzuto F, Massironi S, Partelli S, et al. Gastro-entero-pancreatic neuroendocrine neoplasia: The rules for non-operative management. Surg Oncol. 2020; 35: 141–148.
  167. Partelli S, Bartsch DK, Capdevila J, et al. Antibes Consensus Conference participants. ENETS Consensus Guidelines for Standard of Care in Neuroendocrine Tumours: Surgery for Small Intestinal and Pancreatic Neuroendocrine Tumours. Neuroendocrinology. 2017; 105(3): 255–265.
  168. Le Treut YP, Grégoire E, Klempnauer J, et al. For ELITA. Liver transplantation for neuroendocrine tumors in Europe-results and trends in patient selection: a 213-case European liver transplant registry study. Ann Surg. 2013; 257(5): 807–815.
  169. Lerut JP, Orlando G, Adam R, et al. European Liver Transplant Registry. The place of liver transplantation in the treatment of hepatic epitheloid hemangioendothelioma: report of the European liver transplant registry. Ann Surg. 2007; 246(6): 949–57; discussion 957.
  170. Gu P, Wu J, Newman E, et al. Treatment of liver metastases in patients with neuroendocrine tumors of gastroesophageal and pancreatic origin. Int J Hepatol. 2012; 2012: 131659.
  171. Sher LS, Levi DM, Wecsler JS, et al. Liver transplantation for metastatic neuroendocrine tumors: Outcomes and prognostic variables. J Surg Oncol. 2015; 112(2): 125–132.
  172. Mazzaferro V, Sposito C, Coppa J, et al. The Long-Term Benefit of Liver Transplantation for Hepatic Metastases From Neuroendocrine Tumors. Am J Transplant. 2016; 16(10): 2892–2902.
  173. Moris D, Tsilimigras DI, Ntanasis-Stathopoulos I, et al. Liver transplantation in patients with liver metastases from neuroendocrine tumors: A systematic review. Surgery. 2017; 162(3): 525–536.
  174. Basuroy R, Srirajaskanthan R, Prachalias A, et al. Review article: the investigation and management of gastric neuroendocrine tumours. Aliment Pharmacol Ther. 2014; 39(10): 1071–1084.
  175. Zhao B, Hollandsworth HM, Lopez NE, et al. Outcomes for a Large Cohort of Patients with Rectal Neuroendocrine Tumors: an Analysis of the National Cancer Database. J Gastrointest Surg. 2021; 25(2): 484–491.
  176. Gu MG, Lee SiH. [Endoscopic Treatment Outcome of Rectal Neuroendocrine Tumors Removed by Ligation-assisted Endoscopic Submucosal Resection]. Korean J Gastroenterol. 2018; 72(3): 128–134.
  177. Kim J, Kim JH, Lee JY, et al. Clinical outcomes of endoscopic mucosal resection for rectal neuroendocrine tumor. BMC Gastroenterol. 2018; 18(1): 77.
  178. Wang XY, Chai NL, Linghu EQ, et al. The outcomes of modified endoscopic mucosal resection and endoscopic submucosal dissection for the treatment of rectal neuroendocrine tumors and the value of endoscopic morphology classification in endoscopic resection. BMC Gastroenterol. 2020; 20(1): 200.
  179. So H, Yoo SuH, Han S, et al. Efficacy of Precut Endoscopic Mucosal Resection for Treatment of Rectal Neuroendocrine Tumors. Clin Endosc. 2017; 50(6): 585–591.
  180. Aepli P, Criblez D, Baumeler S, et al. Endoscopic full thickness resection (EFTR) of colorectal neoplasms with the Full Thickness Resection Device (FTRD): Clinical experience from two tertiary referral centers in Switzerland. United European Gastroenterol J. 2018; 6(3): 463–470.
  181. Meier B, Albrecht H, Wiedbrauck T, et al. Full-thickness resection of neuroendocrine tumors in the rectum. Endoscopy. 2020; 52(1): 68–72.
  182. Evans JA, Chandrasekhara V, Chathadi KV, et al. ASGE Standards of Practice Committee. The role of endoscopy in the management of premalignant and malignant conditions of the stomach. Gastrointest Endosc. 2015; 82(1): 1–8.
  183. Fendrich V, Bartsch DK. Surgical treatment of gastrointestinal neuroendocrine tumors. Langenbecks Arch Surg. 2011; 396(3): 299–311.
  184. Turaga KK, Kvols LK. Recent progress in the understanding, diagnosis, and treatment of gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin. 2011; 61(2): 113–132.
  185. Pimentel-Nunes P, Dinis-Ribeiro M, Ponchon T, et al. Endoscopic submucosal dissection: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2015; 47(9): 829–854.
  186. Spindelböck W, Kump PK, Püspök A, et al. [Neuroendocrine tumors in daily gastroenterology and endoscopy - a practice manual]. Z Gastroenterol. 2019; 57(12): 1493–1513.
  187. Armellini E, Crinò SF, Ballarè M, et al. Endoscopic ultrasound-guided radiofrequency ablation of a pancreatic neuroendocrine tumor. Endoscopy. 2015; 47 Suppl 1 UCTN: E600–E601.
  188. Bhutani MS, Arora A. New developments in endoscopic ultrasound-guided therapies. Endosc Ultrasound. 2015; 4(4): 304–311.
  189. Pavel M, Ćwikła JB, Lombard-Bohas C, et al. Efficacy and safety of high-dose lanreotide autogel in patients with progressive pancreatic or midgut neuroendocrine tumours: CLARINET FORTE phase 2 study results. Eur J Cancer. 2021; 157: 403–414.
  190. Jawiarczyk A, Bolanowski M, Syrycka J, et al. Effective therapy of insulinoma by using long-acting somatostatin analogue. A case report and literature review. Exp Clin Endocrinol Diabetes. 2012; 120(2): 68–72.
  191. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 501–513.
  192. Yao JC, Shah MH, Ito T, et al. RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 514–523.
  193. Sorbye H, Strosberg J, Baudin E, et al. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer. 2014; 120(18): 2814–2823.
  194. ChPL — Afinitor (ewerolimus). https://ec.europa.eu/health/documents/ community-register.
  195. ChPL — Sutent (sunitynib). https://ec.europa.eu/health/documents/ community-register.
  196. Kos-Kudła B. Treatment of neuroendocrine tumors: new recommendations based on the CLARINET study. Contemp Oncol (Pozn). 2015; 19(5): 345–349.
  197. Rinke A, Müller HH, Schade-Brittinger C, et al. PROMID Study Group. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009; 27(28): 4656–4663.
  198. Caplin ME, Pavel M, Ćwikła JB, et al. CLARINET Investigators. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer. 2016; 23(3): 191–199.
  199. Pavel M, O'Toole D, Costa F, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology. 2016; 103(2): 172–185.
  200. Halfdanarson TR, Strosberg JR, Tang L, et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Pancreatic Neuroendocrine Tumors. Pancreas. 2020; 49(7): 863–881.
  201. Oberg K. Interferon in the management of neuroendocrine GEP-tumors: a review. Digestion. 2000; 62 Suppl 1: 92–97.
  202. Garcia-Carbonero R, Sorbye H, Baudin E, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines for High-Grade Gastroenteropancreatic Neuroendocrine Tumors and Neuroendocrine Carcinomas. Neuroendocrinology. 2016; 103(2): 186–194.
  203. Pellat A, Walter T, Augustin J, et al. Chemotherapy in Resected Neuroendocrine Carcinomas of the Digestive Tract: A National Study from the French Group of Endocrine Tumours. Neuroendocrinology. 2020; 110(5): 404–412.
  204. Öberg K. (ed.) Advances in Neuroendocrine Tumor Management. Future Medicine, London 2011: 52–63.
  205. Pisegna JR. (ed). Management of Pancreatic Neuroendocrine Tumors. Springer, New York 2014: 65–75.
  206. Okusaka T, Ueno H, Morizane C, et al. Cytotoxic chemotherapy for pancreatic neuroendocrine tumors. J Hepatobiliary Pancreat Sci. 2015; 22(8): 628–633.
  207. Strosberg JR, Fine RL, Choi J, et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011; 117(2): 268–275.
  208. Moertel CG, Hanley JA, Johnson LA. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1980; 303(21): 1189–1194.
  209. Dilz LM, Denecke T, Steffen IG, et al. Streptozocin/5-fluorouracil chemotherapy is associated with durable response in patients with advanced pancreatic neuroendocrine tumours. Eur J Cancer. 2015; 51(10): 1253–1262.
  210. Meyer T, Qian W, Caplin ME, et al. Capecitabine and streptozocin ± cisplatin in advanced gastroenteropancreatic neuroendocrine tumours. Eur J Cancer. 2014; 50(5): 902–911.
  211. Turner NC, Strauss SJ, Sarker D, et al. Chemotherapy with 5-fluorouracil, cisplatin and streptozocin for neuroendocrine tumours. Br J Cancer. 2010; 102(7): 1106–1112.
  212. Gurusamy K, Davidson B. Diagnostic accuracy of different imaging modalities following computed tomography (CT) scanning for assessing the resectability with curative intent in pancreatic and periampullary cancer. Cochrane Database Syst Rev. 2015; 9(9): CD011515.
  213. Chan JA, Stuart K, Earle CC, et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J Clin Oncol. 2012; 30(24): 2963–2968.
  214. Kulke MH, Stuart K, Enzinger PC, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol. 2006; 24(3): 401–406.
  215. Kunz P, Catalano P, Nimeiri H, et al. A randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors: A trial of the ECOG-ACRIN Cancer Research Group (E2211). J Clin Oncol. 2018; 36(15_suppl): 4004–4004.
  216. Cives M, Ghayouri M, Morse B, et al. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016; 23(9): 759–767.
  217. Cros J, Hentic O, Rebours V, et al. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016; 23(8): 625–633.
  218. Kulke MH, Hornick JL, Frauenhoffer C, et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res. 2009; 15(1): 338–345.
  219. Kolasińska-Ćwikła A. Chemioterapia w guzach neuroendokrynnych układu pokarmowego (GEP-NEN). OncoReview. 2012; 2(4): 255–261.
  220. Lemelin A, Barritault M, Hervieu V, et al. MGMT-NET investigators. O6-methylguanine-DNA methyltransferase (MGMT) status in neuroendocrine tumors: a randomized phase II study (MGMT-NET). Dig Liver Dis. 2019; 51(4): 595–599.
  221. Cassier PA, Walter T, Eymard B, et al. Gemcitabine and oxaliplatin combination chemotherapy for metastatic well-differentiated neuroendocrine carcinomas: a single-center experience. Cancer. 2009; 115(15): 3392–3399.
  222. Oberg K. Management of neuroendocrine tumours. Ann Oncol. 2004; 15 Suppl 4: iv293–iv298.
  223. Fine RL, Gulati AP, Krantz BA, et al. Capecitabine and temozolomide (CAPTEM) for metastatic, well-differentiated neuroendocrine cancers: The Pancreas Center at Columbia University experience. Cancer Chemother Pharmacol. 2013; 71(3): 663–670.
  224. Spada F, Antonuzzo L, Marconcini R, et al. Oxaliplatin-Based Chemotherapy in Advanced Neuroendocrine Tumors: Clinical Outcomes and Preliminary Correlation with Biological Factors. Neuroendocrinology. 2016; 103(6): 806–814.
  225. Wada Y, Hirayama Y, Seki R, et al. [Long- term remission survival with a case of rectal carcinoid tumor with metastasis in the soft tissue effectively treated with the combination therapy of irinotecan/5-fluorouracil/levofolinate followed by resection]. Nihon Naika Gakkai Zasshi. 2007; 96(11): 2513–2515.
  226. Hijioka S, Hosoda W, Matsuo K, et al. Rb Loss and Mutation Are Predictors of the Response to Platinum-Based Chemotherapy in Pancreatic Neuroendocrine Neoplasm with Grade 3: A Japanese Multicenter Pancreatic NEN-G3 Study. Clin Cancer Res. 2017; 23(16): 4625–4632.
  227. Vélayoudom-Céphise FL, Duvillard P, Foucan L, et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer. 2013; 20(5): 649–657.
  228. Heetfeld M, Chougnet CN, Olsen IH, et al. other Knowledge Network members. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015; 22(4): 657–664.
  229. Raj N, Valentino E, Capanu M, et al. Treatment Response and Outcomes of Grade 3 Pancreatic Neuroendocrine Neoplasms Based on Morphology: Well Differentiated Versus Poorly Differentiated. Pancreas. 2017; 46(3): 296–301.
  230. Sorbye H, Welin S, Langer SW, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013; 24(1): 152–160.
  231. Sahu A, Jefford M, Lai-Kwon J, et al. CAPTEM in Metastatic Well-Differentiated Intermediate to High Grade Neuroendocrine Tumors: A Single Centre Experience. J Oncol. 2019; 2019: 9032753.
  232. Rogowski W, Wachuła E, Gorzelak A, et al. Capecitabine and temozolomide combination for treatment of high-grade, well-differentiated neuroendocrine tumour and poorly-differentiated neuroendocrine carcinoma - retrospective analysis. Endokrynol Pol. 2019; 70(4): 313–317.
  233. Al-Toubah TE, Pelle E, Haider M, et al. Toxicity analysis of capecitabine/temozolomide in NETs. J Clin Oncol. 2020; 38(15_suppl): 4614–4614.
  234. Lu Y, Zhao Z, Wang Ji, et al. Safety and efficacy of combining capecitabine and temozolomide (CAPTEM) to treat advanced neuroendocrine neoplasms: A meta-analysis. Medicine (Baltimore). 2018; 97(41): e12784.
  235. Bajetta E, Catena L, Procopio G, et al. Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer Chemother Pharmacol. 2007; 59(5): 637–642.
  236. Welin S, Sorbye H, Sebjornsen S, et al. Clinical effect of temozolomide-based chemotherapy in poorly differentiated endocrine carcinoma after progression on first-line chemotherapy. Cancer. 2011; 117(20): 4617–4622.
  237. Hentic O, Hammel P, Couvelard A, et al. FOLFIRI regimen: an effective second-line chemotherapy after failure of etoposide-platinum combination in patients with neuroendocrine carcinomas grade 3. Endocr Relat Cancer. 2012; 19(6): 751–757.
  238. Walter T, Tougeron D, Baudin E, et al. CEPD investigators. Poorly differentiated gastro-entero-pancreatic neuroendocrine carcinomas: Are they really heterogeneous? Insights from the FFCD-GTE national cohort. Eur J Cancer. 2017; 79: 158–165.
  239. Hadoux J, Malka D, Planchard D, et al. Post-first-line FOLFOX chemotherapy for grade 3 neuroendocrine carcinoma. Endocr Relat Cancer. 2015; 22(3): 289–298.
  240. Collot T, Fumet JD, Klopfenstein Q, et al. Bevacizumab-based Chemotherapy for Poorly-differentiated Neuroendocrine Tumors. Anticancer Res. 2018; 38(10): 5963–5968.
  241. Walter T, Malka D, Hentic O, et al. Evaluating bevacizumab in combination with FOLFIRI after the failure of platinum-etoposide regimen in patients with advanced poorly differentiated neuroendocrine carcinoma: The PRODIGE 41-BEVANEC randomized phase II study. Dig Liver Dis. 2018; 50(2): 195–198.
  242. Rosiek V, Kos-Kudla B. Targeted therapies in neuroendocrine neoplasms. OncoReview. 2012; 2(3): 163–170.
  243. Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016; 387(10022): 968–977.
  244. Grande E. Sequential treatment in disseminated well- and intermediate-differentiated pancreatic neuroendocrine tumors: Common sense or low rationale? World J Clin Oncol. 2016; 7(2): 149–154.
  245. Panzuto F, Rinzivillo M, Fazio N, et al. Real-world study of everolimus in advanced progressive neuroendocrine tumors. Oncologist. 2014; 19(9): 966–974.
  246. Kamp K, Gumz B, Feelders RA, et al. Safety and efficacy of everolimus in gastrointestinal and pancreatic neuroendocrine tumors after (177)Lu-octreotate. Endocr Relat Cancer. 2013; 20(6): 825–831.
  247. Trotti A, Colevas A, Setser A, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003; 13(3): 176–181.
  248. Bernard V, Lombard-Bohas C, Taquet MC, et al. French Group of Endocrine Tumors. Efficacy of everolimus in patients with metastatic insulinoma and refractory hypoglycemia. Eur J Endocrinol. 2013; 168(5): 665–674.
  249. Pavel M, Hainsworth J, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011; 378(9808): 2005–2012.
  250. Chen J, Wang C, Han J, et al. Therapeutic effect of sunitinib malate and its influence on blood glucose concentrations in a patient with metastatic insulinoma. Expert Rev Anticancer Ther. 2013; 13(6): 737–743.
  251. Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010; 28(1): 69–76.
  252. Bajetta E, Catena L, Fazio N, et al. Everolimus in combination with octreotide long-acting repeatable in a first-line setting for patients with neuroendocrine tumors: an ITMO group study. Cancer. 2014; 120(16): 2457–2463.
  253. Kulke MH, Ruszniewski P, Van Cutsem E, et al. A randomized, open-label, phase 2 study of everolimus in combination with pasireotide LAR or everolimus alone in advanced, well-differentiated, progressive pancreatic neuroendocrine tumors: COOPERATE-2 trial. Ann Oncol. 2017; 28(6): 1309–1315.
  254. Castellano D, Capdevila J, Sastre J, et al. Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumour: a phase II study of Spanish Neuroendocrine Tumour Group (GETNE0801). Eur J Cancer. 2013; 49(18): 3780–3787.
  255. Grande E, Capdevila J, Castellano D, et al. Pazopanib in pretreated advanced neuroendocrine tumors: a phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann Oncol. 2015; 26(9): 1987–1993.
  256. Hobday T, Yin J, Pettinger A, et al. Multicenter prospective phase II trial of bevacizumab (bev) for progressive pancreatic neuroendocrine tumor (PNET). J Clin Oncol. 2015; 33(15_suppl): 4096–4096.
  257. Strosberg J, Goldman J, Costa F, et al. The Role of Chemotherapy in Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors. Front Horm Res. 2015; 44: 239–247.
  258. Xu J, Shen L, Bai C, et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020; 21(11): 1489–1499.
  259. Xu J, Shen L, Zhou Z, et al. Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020; 21(11): 1500–1512.
  260. Dasari A, Li D, Sung MW, et al. Efficacy and safety of surufatinib in United States (US) patients (pts) with neuroendocrine tumors (NETs). J Clin Oncol. 2020; 38; 38(15_suppl): 4610–4610.
  261. Patel SP, Othus M, Chae YK, et al. A Phase II Basket Trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin Cancer Res. 2020; 26(10): 2290–2296.
  262. Patel SP, Mayerson E, Chae YK, et al. A phase II basket trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART) SWOG S1609: High-grade neuroendocrine neoplasm cohort. Cancer. 2021; 127(17): 3194–3201.
  263. Klein O, Kee D, Markman B, et al. Immunotherapy of Ipilimumab and Nivolumab in Patients with Advanced Neuroendocrine Tumors: A Subgroup Analysis of the CA209-538 Clinical Trial for Rare Cancers. Clin Cancer Res. 2020; 26(17): 4454–4459.
  264. Ott PA, Bang YJ, Piha-Paul SA, et al. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. J Clin Oncol. 2019; 37(4): 318–327.
  265. Strosberg J, Mizuno N, Doi T, et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin Cancer Res. 2020; 26(9): 2124–2130.
  266. Yao JC, Strosberg J, Fazio N, et al. Spartalizumab in metastatic, well/poorly-differentiated neuroendocrine neoplasms. Endocr Relat Cancer. 2021 [Epub ahead of print].
  267. Lu M, Zhang P, Zhang Y, et al. Efficacy, Safety, and Biomarkers of Toripalimab in Patients with Recurrent or Metastatic Neuroendocrine Neoplasms: A Multiple-Center Phase Ib Trial. Clin Cancer Res. 2020; 26(10): 2337–2345.
  268. Carlsen EA, Fazio N, Granberg D, et al. Peptide receptor radionuclide therapy in gastroenteropancreatic NEN G3: a multicenter cohort study. Endocr Relat Cancer. 2019; 26(2): 227–239.
  269. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013; 40(5): 800–816.
  270. Kunikowska J, Królicki L, Sowa-Staszczak A, et al. Polish experience in Peptide receptor radionuclide therapy. Recent Results Cancer Res. 2013; 194: 467–478.
  271. Kunikowska J, Pawlak D, Bąk MI, et al. Long-term results and tolerability of tandem peptide receptor radionuclide therapy with Y/Lu-DOTATATE in neuroendocrine tumors with respect to the primary location: a 10-year study. Ann Nucl Med. 2017; 31(5): 347–356.
  272. Kunikowska J, Zemczak A, Kołodziej M, et al. Tandem peptide receptor radionuclide therapy using Y/Lu-DOTATATE for neuroendocrine tumors efficacy and side-effects - polish multicenter experience. Eur J Nucl Med Mol Imaging. 2020; 47(4): 922–933.
  273. Pach D, Sowa-Staszczak A, Kunikowska J, et al. Repeated cycles of peptide receptor radionuclide therapy (PRRT)--results and side-effects of the radioisotope 90Y-DOTA TATE, 177Lu-DOTA TATE or 90Y/177Lu-DOTA TATE therapy in patients with disseminated NET. Radiother Oncol. 2012; 102(1): 45–50.
  274. Sowa-Staszczak A, Pach D, Kunikowska J, et al. Efficacy and safety of 90Y-DOTATATE therapy in neuroendocrine tumours. Endokrynol Pol. 2011; 62(5): 392–400.
  275. Sowa-Staszczak A, Pach D, Stefańska A, et al. Case report of a patient with initially inoperable well-differentiated midgut neuroendocrine tumor (WDNT) — PRRT and long-acting somatostatin analogs as the neoadjuvant therapy. Nucl Med Rev Cent East Eur. 2012; 15(2): 137–139.
  276. Handkiewicz-Junak DSA, Hasse-Lazar K, et al. Consolidation treatment with somatoatatin analogues after radiopeptide therapy. Eur J Nucl Med Mol Imaging. 2014; 41: S212–S212.
  277. Strosberg J, El-Haddad G, Wolin E, et al. NETTER-1 Trial Investigators. Phase 3 Trial of Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017; 376(2): 125–135.
  278. Sowa-Staszczak A, Pach D, Chrzan R, et al. Peptide receptor radionuclide therapy as a potential tool for neoadjuvant therapy in patients with inoperable neuroendocrine tumours (NETs). Eur J Nucl Med Mol Imaging. 2011; 38(9): 1669–1674.
  279. Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005; 23(12): 2754–2762.
  280. Kunikowska J, Królicki L, Pawlak D, et al. Semiquantitative analysis and characterization of physiological biodistribution of (68)Ga-DOTA-TATE PET/CT. Clin Nucl Med. 2012; 37(11): 1052–1057.
  281. Kratochwil C, Stefanova M, Mavriopoulou E, et al. SUV of [68Ga]DOTATOC-PET/CT Predicts Response Probability of PRRT in Neuroendocrine Tumors. Mol Imaging Biol. 2015; 17(3): 313–318.
  282. Sharma R, Wang WM, Yusuf S, et al. Ga-DOTATATE PET/CT parameters predict response to peptide receptor radionuclide therapy in neuroendocrine tumours. Radiother Oncol. 2019; 141: 108–115.
  283. Sowa-Staszczak A, Stefanska A, Chrapczynski P, et al. Does combination of "cold" and "hot" somatostatin analogs prolong survival of patients with neuroendocrine neoplasms? Endocr J. 2017; 64(2): 171–177.
  284. https://ec.europa.eu/health/documents/community-register/2017/20170926138665/anx_138665_pl.pdf..
  285. Severi S, Sansovini M, Ianniello A, et al. Feasibility and utility of re-treatment with (177)Lu-DOTATATE in GEP-NENs relapsed after treatment with (90)Y-DOTATOC. Eur J Nucl Med Mol Imaging. 2015; 42(13): 1955–1963.
  286. Yordanova A, Mayer K, Brossart P, et al. Safety of multiple repeated cycles of Lu-octreotate in patients with recurrent neuroendocrine tumour. Eur J Nucl Med Mol Imaging. 2017; 44(7): 1207–1214.
  287. Zemczak A, Gut P, Pawlak D, et al. The Safety and Efficacy of the Repeated PRRT with [Y]Y/[Lu]Lu-DOTATATE in Patients with NET. Int J Endocrinol. 2021; 2021: 6615511.
  288. Huizing DMV, Aalbersberg EA, Versleijen MWJ, et al. Early response assessment and prediction of overall survival after peptide receptor radionuclide therapy. Cancer Imaging. 2020; 20(1): 57.
  289. Beykan S, Fani M, Jensen SB, et al. In Vivo Biokinetics of Lu-OPS201 in Mice and Pigs as a Model for Predicting Human Dosimetry. Contrast Media Mol Imaging. 2019; 2019: 6438196.
  290. Wild D, Fani M, Fischer R, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014; 55(8): 1248–1252.
  291. Ballal S, Yadav MP, Bal C, et al. Broadening horizons with Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur J Nucl Med Mol Imaging. 2020; 47(4): 934–946.
  292. Kratochwil C, Giesel FL, Bruchertseifer F, et al. ²¹³Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014; 41(11): 2106–2119.
  293. Claringbold PG, Price RA, Turner JH. Phase I–II study of radiopeptide 177Lu-octreotate in combination with capecitabine and temozolomide in advanced low-grade neuroendocrine tumors. Cancer Biother Radiopharm. 2012; 27(9): 561–569.
  294. Claringbold PG, Turner JH. Pancreatic Neuroendocrine Tumor Control: Durable Objective Response to Combination 177Lu-Octreotate-Capecitabine-Temozolomide Radiopeptide Chemotherapy. Neuroendocrinology. 2016; 103(5): 432–439.
  295. Kashyap R, Hofman MS, Michael M, et al. Favourable outcomes of (177)Lu-octreotate peptide receptor chemoradionuclide therapy in patients with FDG-avid neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2015; 42(2): 176–185.
  296. Bison SM, Pool SE, Koelewijn SJ, et al. Peptide receptor radionuclide therapy (PRRT) with [(177)Lu-DOTA(0),Tyr(3)]octreotate in combination with RAD001 treatment: further investigations on tumor metastasis and response in the rat pancreatic CA20948 tumor model. EJNMMI Res. 2014; 4: 21.
  297. Zagar TM, White RR, Willett CG, et al. Resected pancreatic neuroendocrine tumors: patterns of failure and disease-related outcomes with or without radiotherapy. Int J Radiat Oncol Biol Phys. 2012; 83(4): 1126–1131.
  298. Arvold ND, Willett CG, Fernandez-del Castillo C, et al. Pancreatic neuroendocrine tumors with involved surgical margins: prognostic factors and the role of adjuvant radiotherapy. Int J Radiat Oncol Biol Phys. 2012; 83(3): e337–e343.
  299. Contessa JN, Griffith KA, Wolff E, et al. Radiotherapy for pancreatic neuroendocrine tumors. Int J Radiat Oncol Biol Phys. 2009; 75(4): 1196–1200.
  300. Schippers AC, Collettini F, Steffen IG, et al. Initial Experience with CT-Guided High-Dose-Rate Brachytherapy in the Multimodality Treatment of Neuroendocrine Tumor Liver Metastases. J Vasc Interv Radiol. 2017; 28(5): 672–682.
  301. Myrehaug S, Hallet J, Chu W, et al. Proof of concept for stereotactic body radiation therapy in the treatment of functional neuroendocrine neoplasms. J Radiosurg SBRT. 2020; 6(4): 321–324.
  302. Hudson JM, Chung HTK, Chu W, et al. Stereotactic Ablative Radiotherapy for the Management of Liver Metastases from Neuroendocrine Neoplasms: A Preliminary Study. Neuroendocrinology. 2022; 112(2): 153–160.
  303. Chan DL, Thompson R, Lam M, et al. External Beam Radiotherapy in the Treatment of Gastroenteropancreatic Neuroendocrine Tumours: A Systematic Review. Clin Oncol (R Coll Radiol). 2018; 30(7): 400–408.
  304. Knigge U, Capdevila J, Bartsch DK, et al. Antibes Consensus Conference Participants, Antibes Consensus Conference participants. ENETS Consensus Recommendations for the Standards of Care in Neuroendocrine Neoplasms: Follow-Up and Documentation. Neuroendocrinology. 2017; 105(3): 310–319.
  305. van Adrichem RCS, Kamp K, van Deurzen CHM, et al. Is There an Additional Value of Using Somatostatin Receptor Subtype 2a Immunohistochemistry Compared to Somatostatin Receptor Scintigraphy Uptake in Predicting Gastroenteropancreatic Neuroendocrine Tumor Response? Neuroendocrinology. 2016; 103(5): 560–566.
  306. European Society for Medical Oncology. Standard Operating Procedures (SOPs) for Authors and templates for ESMO Clinical Practice Guidelines (CPGs) and ESMO-MCBS Scores 2021. https://www.esmo.org/content/download/77789/1426712/file/ESMO-Clinical-Practice-Guidelines-Standard-Operating-Procedures.pdf.
  307. The National Comprehensive Cancer Network. About the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) 2020. https://www.nccn.org/professionals/default.aspx.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl