open access

Vol 73, No 2 (2022)
Guidelines / Expert consensus
Submitted: 2022-03-21
Accepted: 2022-03-21
Published online: 2022-04-26
Get Citation

Diagnosis and treatment of thyroid cancer in adult patients — Recommendations of Polish Scientific Societies and the National Oncological Strategy. 2022 Update [Diagnostyka i leczenie raka tarczycy u chorych dorosłych — Rekomendacje Polskich Towarzystw Naukowych oraz Narodowej Strategii Onkologicznej. Aktualizacja na rok 2022]

Barbara Jarząb1, Marek Dedecjus2, Andrzej Lewiński34, Zbigniew Adamczewski5, Elwira Bakuła-Zalewska6, Agata Bałdys-Waligórska7, Marcin Barczyński8, Magdalena Biskup-Frużyńska9, Barbara Bobek-Billewicz10, Artur Bossowski11, Monika Buziak-Bereza12, Ewa Chmielik9, Agnieszka Czarniecka13, Rafał Czepczyński14, Jarosław Ćwikła15, Katarzyna Dobruch-Sobczak16, Janusz Dzięcioł17, Aneta Gawlik18, Jacek Gawrychowski19, Daria Handkiewicz-Junak1, Jerzy Harasymczuk20, Alicja Hubalewska-Dydejczyk12, Joanna Januszkiewicz-Caulier2, Michał Jarząb21, Krzysztof Kaczka22, Michał Kalemba1, Grzegorz Kamiński23, Małgorzata Karbownik-Lewińska244, Andrzej Kawecki25, Aneta Kluczewska-Gałka1, Agnieszka Kolasińska-Ćwikła26, Magdalena Kołton1, Aleksander Konturek8, Beata Kos-Kudła27, Agnieszka Kotecka-Blicharz1, Aldona Kowalska2829, Jolanta Krajewska1, Andrzej Kram30, Leszek Królicki31, Aleksandra Kukulska1, Michał Kusiński32, Krzysztof Kuzdak33, Dariusz Lange34, Aleksandra Ledwon1, Ewa Małecka‑Tendera18, Przemysław Mańkowski20, Bartosz Migda35, Marek Niedziela36, Małgorzata Oczko-Wojciechowska37, Dariusz Polnik38, Lech Pomorski22, Marek Ruchała14, Konrad Samborski1, Anna Skowrońska-Szcześniak39, Agata Stanek-Widera34, Ewa Stobiecka9, Zoran Stojčev40, Magdalena Suchorzepka-Simek9, Anhelli Syrenicz41, Ewelina Szczepanek-Parulska14, Małgorzata Trofimiuk‑Müldner12, Andrzej Tysarowski42, Andrzej Wygoda43, Klaudia Zajkowska2, Ewa Zembala-Nożyńska9, Agnieszka Żyłka2
·
Pubmed: 35593680
·
Endokrynol Pol 2022;73(2):173-300.
Affiliations
  1. Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
  2. Department of Oncological Endocrinology and Nuclear Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
  3. Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Lodz, Poland
  4. Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital — Research Institute, Lodz, Poland
  5. Department of Nuclear Medicine, Medical University of Lodz, Poland, Poland
  6. Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland, Poland
  7. Andrzej Frycz Modrzewski Krakow University, Faculty of Medicine and Health Sciences, Department of Endocrinology and Internal Medicine, Poland
  8. Department of Endocrine Surgery, Third Chair of General Surgery, Jagiellonian University Medical College, Kraków, Poland
  9. Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
  10. Radiology and Diagnostic Imaging Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
  11. Department of Paediatrics, Endocrinology, and Diabetology with a Cardiology Division, Medical University of Bialystok, Bialystok, Poland
  12. Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Cracow, Poland
  13. The Oncologic and Reconstructive Surgery Clinic, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
  14. Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
  15. Department of Cardiology and Internal Medicine; School of Medicine, University of Warmia and Mazury Olsztyn, Poland
  16. Department of Radiology II, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland, Warsaw, Poland
  17. Department of Human Anatomy, Medical University of Bialystok, Poland
  18. Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
  19. Department of General and Endocrine Surgery, Medical University of Silesia, Katowice, Poland
  20. Department of Pediatric Surgery, Traumatology & Urology, Karol Marcinkowski University of Medical Sciences in Poznan, Karol Jonscher Teaching Hospital, Poland
  21. Breast Cancer Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
  22. Department of General and Oncological Surgery, Chair of Surgical Clinical Sciences, Medical University, Lodz, Lodz, Poland
  23. Department of Endocrinology and Radioisotope Therapy, Military Institute of Medicine, Warsaw, Poland
  24. Chair and Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
  25. Head and Neck Cancer Department, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
  26. Department of Oncology and Radiotherapy, Maria Skłodowska‑Curie National Research Institute of Oncology, Warsaw, Poland
  27. Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
  28. Collegium Medicum Jan Kochanowski University Kielce, Poland, Poland
  29. Endocrinology Clinic, Holycross Cancer Center, Kielce, Poland
  30. Pathology Department, West Pomeranian Oncology Center, Szczecin, Poland
  31. Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
  32. Department of Endocrine, General and Vascular Surgery, Medical University of Lodz, Poland
  33. Department of Endocrine, General and Vascular Surgery, Medical University of Lodz, Poland
  34. University of Technology, Faculty of Medicine, Katowice, Poland
  35. Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical Faculty, Medical University of Warsaw, Poland
  36. Department of Oncology and Breast Diseases, CMKP, Warsaw, Poland
  37. Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
  38. Department of Pediatric Surgery and Organ Transplantation, The Children’s Memorial Health Institute, Warsaw, Poland
  39. Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
  40. Department of Oncology and Breast Diseases, CMKP, Warsaw, Poland
  41. Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
  42. Cancer Molecular and Genetic Diagnostics Department, Maria Sklodowska‑Curie — National Research Institute of Oncology, Warsaw, Poland
  43. Radiation and Clinical Oncology Department, Maria Sklodowska‑Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland

open access

Vol 73, No 2 (2022)
Guidelines
Submitted: 2022-03-21
Accepted: 2022-03-21
Published online: 2022-04-26

Abstract

The guidelines Thyroid Cancer 2022 are prepared based on previous Polish recommendations updated in 2018. They consider international guidelines — American Thyroid Association (ATA) 2015 and National Comprehensive Cancer Network (NCCN); however, they are adapted according to the ADAPTE process. The strength of the recommendations and the quality of the scientific evidence are assessed according to the GRADE system and the ATA 2015 and NCCN recommendations.

The core of the changes made in the Polish recommendations is the inclusion of international guidelines and the results of those scientific studies that have already proven themselves prospectively.
These extensions allow de-escalation of the therapeutic management in low-risk thyroid carcinoma, i.e., enabling active surveillance in papillary microcarcinoma to be chosen alternatively to minimally invasive techniques after agreeing on such management with the patient. Further extensions allow the use of thyroid lobectomy with the isthmus (hemithyroidectomy) in low-risk cancer up to 2 cm in diameter, modification of the indications for postoperative radioiodine treatment toward personalized approach, and clarification of the criteria used during postoperative L-thyroxine treatment.

At the same time, the criteria for the preoperative differential diagnosis of nodular goiter in terms of ultrasonography and fine-needle aspiration biopsy have been clarified, and the rules for the histopathological examination of postoperative thyroid material have been updated. New, updated rules for monitoring patients after treatment are also presented.
The updated recommendations focus on ensuring the best possible quality of life after thyroid cancer treatment while maintaining the good efficacy of this treatment.

Abstract

The guidelines Thyroid Cancer 2022 are prepared based on previous Polish recommendations updated in 2018. They consider international guidelines — American Thyroid Association (ATA) 2015 and National Comprehensive Cancer Network (NCCN); however, they are adapted according to the ADAPTE process. The strength of the recommendations and the quality of the scientific evidence are assessed according to the GRADE system and the ATA 2015 and NCCN recommendations.

The core of the changes made in the Polish recommendations is the inclusion of international guidelines and the results of those scientific studies that have already proven themselves prospectively.
These extensions allow de-escalation of the therapeutic management in low-risk thyroid carcinoma, i.e., enabling active surveillance in papillary microcarcinoma to be chosen alternatively to minimally invasive techniques after agreeing on such management with the patient. Further extensions allow the use of thyroid lobectomy with the isthmus (hemithyroidectomy) in low-risk cancer up to 2 cm in diameter, modification of the indications for postoperative radioiodine treatment toward personalized approach, and clarification of the criteria used during postoperative L-thyroxine treatment.

At the same time, the criteria for the preoperative differential diagnosis of nodular goiter in terms of ultrasonography and fine-needle aspiration biopsy have been clarified, and the rules for the histopathological examination of postoperative thyroid material have been updated. New, updated rules for monitoring patients after treatment are also presented.
The updated recommendations focus on ensuring the best possible quality of life after thyroid cancer treatment while maintaining the good efficacy of this treatment.

Get Citation

Keywords

 thyroid cancer, nodular goiter; fine-needle aspiration biopsy; papillary thyroid microcarcinoma; active surveillance; active follow-up; indications for hemithyroidectomy; radioiodine treatment; L-thyroxine

About this article
Title

Diagnosis and treatment of thyroid cancer in adult patients — Recommendations of Polish Scientific Societies and the National Oncological Strategy. 2022 Update [Diagnostyka i leczenie raka tarczycy u chorych dorosłych — Rekomendacje Polskich Towarzystw Naukowych oraz Narodowej Strategii Onkologicznej. Aktualizacja na rok 2022]

Journal

Endokrynologia Polska

Issue

Vol 73, No 2 (2022)

Article type

Guidelines / Expert consensus

Pages

173-300

Published online

2022-04-26

Page views

16868

Article views/downloads

13989

DOI

10.5603/EP.a2022.0028

Pubmed

35593680

Bibliographic record

Endokrynol Pol 2022;73(2):173-300.

Keywords

 thyroid cancer
nodular goiter
fine-needle aspiration biopsy
papillary thyroid microcarcinoma
active surveillance
active follow-up
indications for hemithyroidectomy
radioiodine treatment
L-thyroxine

Authors

Barbara Jarząb
Marek Dedecjus
Andrzej Lewiński
Zbigniew Adamczewski
Elwira Bakuła-Zalewska
Agata Bałdys-Waligórska
Marcin Barczyński
Magdalena Biskup-Frużyńska
Barbara Bobek-Billewicz
Artur Bossowski
Monika Buziak-Bereza
Ewa Chmielik
Agnieszka Czarniecka
Rafał Czepczyński
Jarosław Ćwikła
Katarzyna Dobruch-Sobczak
Janusz Dzięcioł
Aneta Gawlik
Jacek Gawrychowski
Daria Handkiewicz-Junak
Jerzy Harasymczuk
Alicja Hubalewska-Dydejczyk
Joanna Januszkiewicz-Caulier
Michał Jarząb
Krzysztof Kaczka
Michał Kalemba
Grzegorz Kamiński
Małgorzata Karbownik-Lewińska
Andrzej Kawecki
Aneta Kluczewska-Gałka
Agnieszka Kolasińska-Ćwikła
Magdalena Kołton
Aleksander Konturek
Beata Kos-Kudła
Agnieszka Kotecka-Blicharz
Aldona Kowalska
Jolanta Krajewska
Andrzej Kram
Leszek Królicki
Aleksandra Kukulska
Michał Kusiński
Krzysztof Kuzdak
Dariusz Lange
Aleksandra Ledwon
Ewa Małecka‑Tendera
Przemysław Mańkowski
Bartosz Migda
Marek Niedziela
Małgorzata Oczko-Wojciechowska
Dariusz Polnik
Lech Pomorski
Marek Ruchała
Konrad Samborski
Anna Skowrońska-Szcześniak
Agata Stanek-Widera
Ewa Stobiecka
Zoran Stojčev
Magdalena Suchorzepka-Simek
Anhelli Syrenicz
Ewelina Szczepanek-Parulska
Małgorzata Trofimiuk‑Müldner
Andrzej Tysarowski
Andrzej Wygoda
Klaudia Zajkowska
Ewa Zembala-Nożyńska
Agnieszka Żyłka

References (383)
  1. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016; 26(1): 1–133.
  2. Dobruch-Sobczak KS, Krauze A, Migda B, et al. Integration of Sonoelastography Into the TIRADS Lexicon Could Influence the Classification. Front Endocrinol (Lausanne). 2019; 10: 127.
  3. Szczepanek-Parulska E, Woliński K, Stangierski A, et al. Comparison of diagnostic value of conventional ultrasonography and shear wave elastography in the prediction of thyroid lesions malignancy. PLoS One. 2013; 8(11): e81532.
  4. Borowczyk M, Woliński K, Więckowska B, et al. Sonographic Features Differentiating Follicular Thyroid Cancer from Follicular Adenoma-A Meta-Analysis. Cancers (Basel). 2021; 13(5).
  5. Wells SA, Asa SL, Dralle H, et al. American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015; 25(6): 567–610.
  6. Ron E, Lubin J, Shore R, et al. Thyroid Cancer after Exposure to External Radiation: A Pooled Analysis of Seven Studies. Radiat Res. 1995; 141(3): 259.
  7. Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev. 2010; 31(5): 756–773.
  8. Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. 1995. Radiat Res. 2012; 178(2): AV43–AV60.
  9. Russ G, Bonnema SJ, Erdogan MF, et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J. 2017; 6(5): 225–237.
  10. Săftoiu A, Gilja OH, Sidhu PS, et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall Med. 2019; 40(4): 425–453.
  11. Frates MC, Benson CB, Charboneau JW, et al. Society of Radiologists in Ultrasound. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology. 2005; 237(3): 794–800.
  12. Singh Ospina N, Maraka S, Espinosa DeYcaza A, et al. Diagnostic accuracy of thyroid nodule growth to predict malignancy in thyroid nodules with benign cytology: systematic review and meta-analysis. Clin Endocrinol (Oxf). 2016; 85(1): 122–131.
  13. Dobruch-Sobczak K, Adamczewski Z, Szczepanek-Parulska E, et al. Histopathological Verification of the Diagnostic Performance of the EU-TIRADS Classification of Thyroid Nodules-Results of a Multicenter Study Performed in a Previously Iodine-Deficient Region. J Clin Med. 2019; 8(11).
  14. Woliński K, Szkudlarek M, Szczepanek-Parulska E, et al. Usefulness of different ultrasound features of malignancy in predicting the type of thyroid lesions: a meta-analysis of prospective studies. Pol Arch Med Wewn. 2014; 124(3): 97–104.
  15. Frates MC, Benson CB, Doubilet PM, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab. 2006; 91(9): 3411–3417.
  16. Dobruch-Sobczak K, Migda B, Krauze A, et al. Prospective analysis of inter-observer and intra-observer variability in multi ultrasound descriptor assessment of thyroid nodules. J Ultrason. 2019; 19(78): 198–206.
  17. Feldkamp J, Führer D, Luster M, et al. Fine Needle Aspiration in the Investigation of Thyroid Nodules. Dtsch Arztebl Int. 2016; 113(20): 353–359.
  18. Durante C, Grani G, Lamartina L, et al. The Diagnosis and Management of Thyroid Nodules: A Review. JAMA. 2018; 319(9): 914–924.
  19. Kim MJ, Kim EK, Park SIl, et al. US-guided fine-needle aspiration of thyroid nodules: indications, techniques, results. Radiographics. 2008; 28(7): 1869–86; discussion 1887.
  20. Woliński K, Szczepanek-Parulska E, Stangierski A, et al. How to select nodules for fine-needle aspiration biopsy in multinodular goitre. Role of conventional ultrasonography and shear wave elastography - a preliminary study. Endokrynol Pol. 2014; 65(2): 114–118.
  21. Barroeta J, Wang H, Shiina N, et al. Is Fine-Needle Aspiration (FNA) of Multiple Thyroid Nodules Justified? Endocr Pathol. 2006; 17(1): 61–66.
  22. Scappaticcio L, Piccardo A, Treglia G, et al. The dilemma of F-FDG PET/CT thyroid incidentaloma: what we should expect from FNA. A systematic review and meta-analysis. Endocrine. 2021; 73(3): 540–549.
  23. Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017; 27(11): 1341–1346.
  24. Shin JHo, Han SW, Lee HL, et al. Whirling technique for thyroid fine needle aspiration biopsy: a preliminary study of effectiveness and safety. Ultrasonography. 2021; 40(1): 147–157.
  25. Lee J, Kim BK, Sul HJ, et al. Negative pressure is not necessary for using fine-needle aspiration biopsy to diagnose suspected thyroid nodules: a prospective randomized study. Ann Surg Treat Res. 2019; 96(5): 216–222.
  26. Moss WJ, Finegersh A, Pang J, et al. Needle Biopsy of Routine Thyroid Nodules Should Be Performed Using a Capillary Action Technique with 24- to 27-Gauge Needles: A Systematic Review and Meta-Analysis. Thyroid. 2018; 28(7): 857–863.
  27. Jiang D, Zang Y, Jiang D, et al. Value of rapid on-site evaluation for ultrasound-guided thyroid fine needle aspiration. J Int Med Res. 2019; 47(2): 626–634.
  28. Michael CW, Kameyama K, Kitagawa W, et al. Rapid on-site evaluation (ROSE) for fine needle aspiration of thyroid: benefits, challenges and innovative solutions. Gland Surg. 2020; 9(5): 1708–1715.
  29. Leenhardt L, Erdogan MF, Hegedus L, et al. 2013 European thyroid association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J. 2013; 2(3): 147–159.
  30. Zhao H, Li H. Meta-analysis of ultrasound for cervical lymph nodes in papillary thyroid cancer: Diagnosis of central and lateral compartment nodal metastases. Eur J Radiol. 2019; 112: 14–21.
  31. Jiang H, Hsiao P. Clinical application of the ultrasound‐guided fine needle aspiration for thyroglobulin measurement to diagnose lymph node metastasis from differentiated thyroid carcinoma‐literature review. Kaohsiung J Med Sci. 2020; 36(4): 236–243.
  32. Ali S, Cibas E. The Bethesda System for Reporting Thyroid Cytopathology: Definitions, Criteria, and Explanatory Notes. 2nd ed. Springer New York LLC, New York 2018.
  33. Cibas ES, Ali SZ. The Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2009; 19(11): 1159–1165.
  34. Woliński K, Rewaj-Łosyk M, Ruchała M. Sonographic features of medullary thyroid carcinomas — a systematic review and meta-analysis. Endokrynol Pol. 2014; 65(4): 314–318.
  35. Wang CCC, Friedman L, Kennedy GC, et al. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid. 2011; 21(3): 243–251.
  36. Linhares SM, Handelsman R, Picado O, et al. Fine needle aspiration and the Bethesda system: Correlation with histopathology in 1,228 surgical patients. Surgery. 2021; 170(5): 1364–1368.
  37. Lyle MA, Dean DS. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in patients taking novel oral anticoagulants. Thyroid. 2015; 25(4): 373–376.
  38. Abu-Yousef MM, Larson JH, Kuehn DM, et al. Safety of ultrasound-guided fine needle aspiration biopsy of neck lesions in patients taking antithrombotic/anticoagulant medications. Ultrasound Q. 2011; 27(3): 157–159.
  39. Khadra H, Kholmatov R, Monlezun D, et al. Do anticoagulation medications increase the risk of haematoma in ultrasound-guided fine needle aspiration of thyroid lesions? Cytopathology. 2018; 29(6): 565–568.
  40. Witt DM, Nieuwlaat R, Clark NP, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: optimal management of anticoagulation therapy. Blood Adv. 2018; 2(22): 3257–3291.
  41. Grandone E, Barcellona D, Colaizzo D, et al. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in patients on oral anticoagulants. J Endocrinol Invest. 2017; 40(7): 785–786.
  42. Duketis, J. Perioperative management of patients receiving anticoagulants - UpToDate. https://www.uptodate.com/contents/perioperative-management-of-patients-receiving-anticoagulants (Feb 3, 2022).
  43. Zawilska K, Bała M, Błędowski P, et al. [Polish guidelines for the prevention and treatment of venous thromboembolism. 2012 update]. Pol Arch Int Med. 2012; 122(Suppl. 2): 1–76.
  44. Tomkowski W, Kuca P, Urbanek T, et al. Venous thromboembolism — recommendations on the prevention, diagnostic approach and management. The 2017 Polish Consensus Statement. Acta Angiol. 2017; 23(2): 35–71.
  45. Kasprzak J, Dąbrowski R, Barylski M, et al. Doustne antykoagulanty nowej generacji — aspekty praktyczne. Stanowisko Sekcji Farmakoterapii Sercowo-Naczyniowej Polskiego Towarzystwa Kardiologicznego. Folia Cardiol. 2016; 11(5): 377–393.
  46. Witkowski M, Witkowska M, Smolewski P. The latest recommendations on the use of new oral anticoagulants in routine practice. Postep Hig Med Dosw. 2016; 70: 43–55.
  47. Jarząb B, Dedecjus M, Handkiewicz-Junak D, et al. Diagnostics and Treatment of Thyroid Carcinoma. Endokrynol Pol. 2016; 67(1): 74–107.
  48. Alexander EK, Heering JP, Benson CB, et al. Assessment of nondiagnostic ultrasound-guided fine needle aspirations of thyroid nodules. J Clin Endocrinol Metab. 2002; 87(11): 4924–4927.
  49. Słowińska-Klencka D, Woźniak-Oseła E, Popowicz B, et al. Repeat FNA Significantly Lowers Number of False Negative Results in Patients with Benign Nodular Thyroid Disease and Features of Chronic Thyroiditis. Int J Endocrinol. 2014; 2014: 967381.
  50. Garber JR, Papini E, Frasoldati A, et al. American Association of Clinical Endocrinology And Associazione Medici Endocrinologi Thyroid Nodule Algorithmic Tool. Endocr Pract. 2021; 27(7): 649–660.
  51. Rosário PW, Calsolari MR. Thyroid nodules with highly suspicious ultrasonographic features, but with benign cytology on two occasions: is malignancy still possible? Arch Endocrinol Metab. 2016; 60(4): 402–404.
  52. Alexander EK, Hurwitz S, Heering JP, et al. Natural history of benign solid and cystic thyroid nodules. Ann Intern Med. 2003; 138(4): 315–318.
  53. Kotecka-Blicharz A, Pfeifer A, Czarniecka A, et al. Thyroid nodules with indeterminate cytopathology: a constant challenge in everyday practice. The effectiveness of clinical decisions using diagnostic tools available in Poland. Pol Arch Intern Med. 2021; 131(12).
  54. Ho AS, Sarti EE, Jain KS, et al. Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid. 2014; 24(5): 832–839.
  55. Yazgan A, Balci S, Dincer N, et al. Hürthle cell presence alters the distribution and outcome of categories in the Bethesda system for reporting thyroid cytopathology. Cytopathology. 2014; 25(3): 185–189.
  56. Filetti S, Durante C, Hartl D, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019; 30(12): 1856–1883.
  57. Haddad R, Bischoff L, Bernet Vet al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Thyroid Carcinoma. https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf (Apr 4, 2021).
  58. Bible KC, Kebebew E, Brierley J, et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid. 2021; 31(3): 337–386.
  59. Momesso DP, Vaisman F, Yang SP, et al. Dynamic Risk Stratification in Patients with Differentiated Thyroid Cancer Treated Without Radioactive Iodine. J Clin Endocrinol Metab. 2016; 101(7): 2692–2700.
  60. Ito Y, Miyauchi A, Inoue H, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg. 2010; 34(1): 28–35.
  61. Ito Y, Miyauchi A, Kihara M, et al. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid. 2014; 24(1): 27–34.
  62. Sugitani I, Toda K, Yamada K, et al. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J Surg. 2010; 34(6): 1222–1231.
  63. Tuttle RM, Fagin JA, Minkowitz G, et al. Natural History and Tumor Volume Kinetics of Papillary Thyroid Cancers During Active Surveillance. JAMA Otolaryngol Head Neck Surg. 2017; 143(10): 1015–1020.
  64. Sakai T, Sugitani I, Ebina A, et al. Active Surveillance for T1bN0M0 Papillary Thyroid Carcinoma. Thyroid. 2019; 29(1): 59–63.
  65. Molinaro E, Campopiano MC, Pieruzzi L, et al. Active Surveillance in Papillary Thyroid Microcarcinomas is Feasible and Safe: Experience at a Single Italian Center. J Clin Endocrinol Metab. 2020; 105(3).
  66. Cho SeJ, Suh CH, Baek JH, et al. Active Surveillance for Small Papillary Thyroid Cancer: A Systematic Review and Meta-Analysis. Thyroid. 2019; 29(10): 1399–1408.
  67. Saravana-Bawan B, Bajwa A, Paterson J, et al. Active surveillance of low-risk papillary thyroid cancer: A meta-analysis. Surgery. 2020; 167(1): 46–55.
  68. Krajewska J. Czy przyszedł już czas na aktywny nadzór w mikroraku brodawkowatym tarczycy? In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 19–42.
  69. Ito Y, Miyauchi A, Oda H, et al. Low-risk papillary microcarcinoma of the thyroid: A review of active surveillance trials. Eur J Surg Oncol. 2018; 44(3): 307–315.
  70. Moon JH, Kim JiH, Lee EK, et al. Study Protocol of Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro). Endocrinol Metab (Seoul). 2018; 33(2): 278–286.
  71. Sawka AM, Ghai S, Tomlinson G, et al. A protocol for a Canadian prospective observational study of decision-making on active surveillance or surgery for low-risk papillary thyroid cancer. BMJ Open. 2018; 8(4): e020298.
  72. Czarniecka A, Dedecjus M. Jak przedoperacyjnie przewidzieć raka brodawkowatego tarczycy niskiego ryzyka (low-risk PTC)? In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 43–49.
  73. Ledwon A. Postępowanie w planowaniu leczenia raka tarczycy — jak przewidzieć raka niskiego ryzyka? In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022.
  74. Schuetz M, Beheshti M, Oezer S, et al. Calcitonin measurements for early detection of medullary thyroid carcinoma or its premalignant conditions in Hashimoto’s thyroiditis. Anticancer Res. 2006; 26(1B): 723–727.
  75. Fugazzola L, Di Stefano M, Censi S, et al. Basal and stimulated calcitonin for the diagnosis of medullary thyroid cancer: updated thresholds and safety assessment. J Endocrinol Invest. 2021; 44(3): 587–597.
  76. Fugazzola L. Baseline and stimulated calcitonin: Thresholds for the diagnosis of medullary thyroid cancer. Ann Endocrinol (Paris). 2019; 80(3): 191–192.
  77. Mian C, Perrino M, Colombo C, et al. Refining calcium test for the diagnosis of medullary thyroid cancer: cutoffs, procedures, and safety. J Clin Endocrinol Metab. 2014; 99(5): 1656–1664.
  78. Patel KN, Yip L, Lubitz CC, et al. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Thyroid Disease in Adults. Ann Surg. 2020; 271(3): e21–e93.
  79. Luster M, Aktolun C, Amendoeira I, et al. European Perspective on 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: Proceedings of an Interactive International Symposium. Thyroid. 2019; 29(1): 7–26.
  80. Słowińska-Klencka D, Woźniak E, Wojtaszek M, et al. Low malignancy risk of thyroid follicular lesion of undetermined significance in patients from post-endemic areas. Eur J Endocrinol. 2013; 168(4): 621–630.
  81. Słowińska-Klencka D, Wojtaszek-Nowicka M, Sporny S, et al. Analysis of clinical significance of equivocal thyroid cytology with a special consideration for FLUS category — five years of new classification of FNA results. Endokrynol Pol. 2016; 67(1): 23–34.
  82. Słowińska-Klencka D, Wojtaszek-Nowicka M, Sporny S, et al. The predictive value of sonographic images of follicular lesions — a comparison with nodules unequivocal in FNA — single centre prospective study. BMC Endocr Disord. 2016; 16(1): 69.
  83. Stanek-Widera A, Biskup-Frużyńska M, Zembala-Nożyńska E, et al. Suspicious for follicular neoplasm or follicular neoplasm? The dilemma of a pathologist and a surgeon. Endokrynol Pol. 2016; 67(1): 17–22.
  84. Mendelsohn AH, Elashoff DA, Abemayor E, et al. Surgery for papillary thyroid carcinoma: is lobectomy enough? Arch Otolaryngol Head Neck Surg. 2010; 136(11): 1055–1061.
  85. Matsuzu K, Sugino K, Masudo K, et al. Thyroid lobectomy for papillary thyroid cancer: long-term follow-up study of 1,088 cases. World J Surg. 2014; 38(1): 68–79.
  86. Rajjoub SR, Yan H, Calcatera NA, et al. Thyroid lobectomy is not sufficient for T2 papillary thyroid cancers. Surgery. 2018; 163(5): 1134–1143.
  87. Czarniecka A, Zeman M, Wozniak G, et al. Therapeutic Strategy in Low-Risk Papillary Thyroid Carcinoma - Long-Term Results of the First Single-Center Prospective Non-Randomized Trial Between 2011 and 2015. Front Endocrinol (Lausanne). 2021; 12: 718833.
  88. Czarniecka A, Dedecjus M. Wskazania do optymalizacji zakresu leczenia chirurgicznego chorych na zróżnicowane raki tarczycy (DTC) oraz wskazania do interwencji niechirurgicznej. In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 7–17.
  89. Nixon IJ, Ganly I, Patel SG, et al. Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy. Surgery. 2012; 151(4): 571–579.
  90. Shibata M, Inaishi T, Ichikawa T, et al. Extent of thyroidectomy is not a major determinant of survival in low- or high-risk papillary thyroid cancer. Ann Surg Oncol. 2005; 12(1): 81–89.
  91. Adam MA, Pura J, Gu L, et al. Extent of surgery for papillary thyroid cancer is not associated with survival: an analysis of 61,775 patients. Ann Surg. 2014; 260(4): 601–5; discussion 605.
  92. Kuba S, Yamanouchi K, Hayashida N, et al. Total thyroidectomy versus thyroid lobectomy for papillary thyroid cancer: Comparative analysis after propensity score matching: A multicenter study. Int J Surg. 2017; 38: 143–148.
  93. Song E, Han M, Oh HS, et al. Lobectomy Is Feasible for 1-4 cm Papillary Thyroid Carcinomas: A 10-Year Propensity Score Matched-Pair Analysis on Recurrence. Thyroid. 2019; 29(1): 64–70.
  94. Bosset M, Bonjour M, Castellnou S, et al. Long-Term Outcome of Lobectomy for Thyroid Cancer. Eur Thyroid J. 2021; 10(6): 486–494.
  95. Bojoga A, Koot A, Bonenkamp J, et al. The Impact of the Extent of Surgery on the Long-Term Outcomes of Patients with Low-Risk Differentiated Non-Medullary Thyroid Cancer: A Systematic Meta-Analysis. J Clin Med. 2020; 9(7).
  96. McDow AD, Saucke MC, Marka NA, et al. Thyroid Lobectomy for Low-Risk Papillary Thyroid Cancer: A National Survey of Low- and High-Volume Surgeons. Ann Surg Oncol. 2021; 28(7): 3568–3575.
  97. Papini E, Monpeyssen H, Frasoldati A, et al. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules. Eur Thyroid J. 2020; 9(4): 172–185.
  98. Kim JH, Baek JH, Lim HK, et al. Guideline Committee for the Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. 2017 Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology. Korean J Radiol. 2018; 19(4): 632–655.
  99. Zhang M, Luo Y, Zhang Y, et al. Efficacy and Safety of Ultrasound-Guided Radiofrequency Ablation for Treating Low-Risk Papillary Thyroid Microcarcinoma: A Prospective Study. Thyroid. 2016; 26(11): 1581–1587.
  100. Tong M, Li S, Li Y, et al. Efficacy and safety of radiofrequency, microwave and laser ablation for treating papillary thyroid microcarcinoma: a systematic review and meta-analysis. Int J Hyperthermia. 2019; 36(1): 1278–1286.
  101. Cho SeJ, Baek SMi, Lim HK, et al. Long-Term Follow-Up Results of Ultrasound-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: More Than 5-Year Follow-Up for 84 Tumors. Thyroid. 2020; 30(12): 1745–1751.
  102. Kim Jh, Yoo WS, Park YJ, et al. Efficacy and Safety of Radiofrequency Ablation for Treatment of Locally Recurrent Thyroid Cancers Smaller than 2 cm. Radiology. 2015; 276(3): 909–918.
  103. Kałużna M, Gołąb M, Czepczyński R, et al. Diagnosis, treatment, and prognosis in patients with liver metastases from follicular thyroid carcinoma (FTC). Endokrynol Pol. 2016; 67(3): 332–347.
  104. Fugazzola L, Elisei R, Fuhrer D, et al. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur Thyroid J. 2019; 8(5): 227–245.
  105. DiMarco AN, Wong MS, Jayasekara J, et al. Risk of needing completion thyroidectomy for low-risk papillary thyroid cancers treated by lobectomy. BJS Open. 2019; 3(3): 299–304.
  106. Sawant R, Hulse K, Sohrabi S, et al. The impact of completion thyroidectomy. Eur J Surg Oncol. 2019; 45(7): 1171–1174.
  107. Shaha AR, Patel KN, Michael Tuttle R. Completion thyroidectomy-Have we made appropriate decisions? J Surg Oncol. 2021; 123(1): 37–38.
  108. Shaha AR, Michael Tuttle R. Completion thyroidectomy-indications and complications. Eur J Surg Oncol. 2019; 45(7): 1129–1131.
  109. Krajewska J, Jarząb M, Czarniecka A, et al. Ongoing risk stratification for differentiated thyroid cancer (DTC) - stimulated serum thyroglobulin (Tg) before radioiodine (RAI) ablation, the most potent risk factor of cancer recurrence in M0 patients. Endokrynol Pol. 2016; 67(1): 2–11.
  110. Czarniecka A, Jarzab M, Krajewska J, et al. Prognostic value of lymph node metastases of differentiated thyroid cancer (DTC) according to the local advancement and range of surgical excision. Thyroid Res. 2010; 3(1): 8.
  111. Czarniecka A, Poltorak S, Sacher A, et al. Ocena wyników leczenia chorych na nisko zaawansowanego raka brodawkowatego tarczycy w stopniu zaawansowania klinicznego cT1N0M0 leczonych w ramach prospektywnego badania klinicznego. Endokrynol Pol. 2015; 66(Suppl A): A34–A35.
  112. Králik R, Grigerová M, Takácsová E, et al. Diagnostic ipsilateral central neck dissection may reduce undertreatment of initially low-risk papillary thyroid cancer. Neoplasma. 2021; 68(2): 447–453.
  113. Calò PG, Lombardi CP, Podda F, et al. Role of prophylactic central neck dissection in clinically node-negative differentiated thyroid cancer: assessment of the risk of regional recurrence. Updates Surg. 2017; 69(2): 241–248.
  114. Raffaelli M, De Crea C, Sessa L, et al. Ipsilateral Central Neck Dissection Plus Frozen Section Examination Versus Prophylactic Bilateral Central Neck Dissection in cN0 Papillary Thyroid Carcinoma. Ann Surg Oncol. 2015; 22(7): 2302–2308.
  115. Kim BoY, Choi N, Kim SW, et al. Randomized trial of prophylactic ipsilateral central lymph node dissection in patients with clinically node negative papillary thyroid microcarcinoma. Eur Arch Otorhinolaryngol. 2020; 277(2): 569–576.
  116. Czarniecka A, Poltorak S, Sacher A, et al. Surgical strategy in low advanced differentiated thyroid cancer staged T1N0M0 — results of a pilot feasibility study. Eur Thyroid J. 2014; 3: 104.
  117. Wang Z, Xiang J, Gui Z, et al. Unilateral Tnm T1 And T2 Papillary Thyroid Carcinoma With Lateral Cervical Lymph Node Metastasis: Total Thyroidectomy or Lobectomy? Endocr Practice. 2020; 26(10): 1085–1092.
  118. Li X, Zhang H, Zhou Yu, et al. Risk factors for central lymph node metastasis in the cervical region in papillary thyroid carcinoma: a retrospective study. World J Surg Oncol. 2021; 19(1): 138.
  119. Liang K, He L, Dong W, et al. Risk factors of central lymph node metastasis in cN0 papillary thyroid carcinoma: a study of 529 patients. Med Sci Monit. 2014; 20: 807–811.
  120. Zhang Q, Wang Z, Meng X, et al. Predictors for central lymph node metastases in CN0 papillary thyroid microcarcinoma (mPTC): A retrospective analysis of 1304 cases. Asian J Surg. 2019; 42(4): 571–576.
  121. Liu C, Xiao C, Chen J, et al. Risk factor analysis for predicting cervical lymph node metastasis in papillary thyroid carcinoma: a study of 966 patients. BMC Cancer. 2019; 19(1): 622.
  122. Ma B, Wang Yu, Yang S, et al. Predictive factors for central lymph node metastasis in patients with cN0 papillary thyroid carcinoma: A systematic review and meta-analysis. Int J Surg. 2016; 28: 153–161.
  123. Zhu J, Zheng J, Li L, et al. Application of Machine Learning Algorithms to Predict Central Lymph Node Metastasis in T1-T2, Non-invasive, and Clinically Node Negative Papillary Thyroid Carcinoma. Front Med (Lausanne). 2021; 8: 635771.
  124. Ahn JH, Kwak JH, Yoon SG, et al. A prospective randomized controlled trial to assess the efficacy and safety of prophylactic central compartment lymph node dissection in papillary thyroid carcinoma. Surgery. 2022; 171(1): 182–189.
  125. Barczyński M, Konturek A, Stopa M, et al. Prophylactic central neck dissection for papillary thyroid cancer. Br J Surg. 2013; 100(3): 410–418.
  126. Czarniecka A. Limfadenektomia szyjna w raku tarczycy. In: Choroby tarczycy i przytarczyc. Diagnostyka i leczenie. Medipage, Warszawa 2014: 202–203.
  127. Bove A, Farrukh M, Di Gioia A, et al. Surgical Skills and Technological Advancements to Avoid Complications in Lateral Neck Dissection for Differentiated Thyroid Cancer. Cancers (Basel). 2021; 13(14).
  128. Lombardi D, Taboni S, Paderno A, et al. Lateral neck dissection for aggresive variants od well-differentiated thyroid cancer. Endocr Pract. 2019; 25(4): 328–334.
  129. Cracchiolo JR, Wong RJ. Management of the lateral neck in well differentiated thyroid cancer. Eur J Surg Oncol. 2018; 44(3): 332–337.
  130. Miller JE, Al-Attar NC, Brown OH, et al. Location and Causation of Residual Lymph Node Metastasis After Surgical Treatment of Regionally Advanced Differentiated Thyroid Cancer. Thyroid. 2018; 28(5): 593–600.
  131. Czarniecka A. Limfadenektomia szyjna w raku tarczycy. In: Gawrychowski J, Jarząb B. ed. Choroby tarczycy i przytarczyc: diagnostyka i leczenie. Medipage, Warszawa 2014: 200–203.
  132. Czarniecka A, Barczyński M, Dedecjus M, Kuzdak K. Nowa strategia leczenia operacyjnego chorych na raka tarczycy. In: Jarząb B, Jeziorski A. ed. Nowe strategie leczenia raka tarczycy. Biblioteka Chirurga Onkologa. Via Medica, Gdańsk 2019: 48–67.
  133. Gemsenjäger E, Perren A, Seifert B, et al. Lymph node surgery in papillary thyroid carcinoma. J Am Coll Surg. 2003; 197(2): 182–190.
  134. Kouvaraki MA, Lee JE, Shapiro SE, et al. Preventable reoperations for persistent and recurrent papillary thyroid carcinoma. Surgery. 2004; 136(6): 1183–1191.
  135. Ito Y, Tomoda C, Uruno T, et al. Preoperative ultrasonographic examination for lymph node metastasis: usefulness when designing lymph node dissection for papillary microcarcinoma of the thyroid. World J Surg. 2004; 28(5): 498–501.
  136. Kang BC, Roh JL, Lee JH, et al. Candidates for limited lateral neck dissection among patients with metastatic papillary thyroid carcinoma. World J Surg. 2014; 38(4): 863–871.
  137. Feng JW, Yang XH, Wu BQ, et al. Predictive factors for central lymph node and lateral cervical lymph node metastases in papillary thyroid carcinoma. Clin Transl Oncol. 2019; 21(11): 1482–1491.
  138. Machens A, Dralle H. Surgical Treatment of Medullary Thyroid Cancer. Recent Results Cancer Res. 2015; 204: 187–205.
  139. Godlewska P, Benke M, Stachlewska-Nasfeter E, et al. Risk factors of permanent hypoparathyroidism after total thyroidectomy and central neck dissection for papillary thyroid cancer: a prospective study. Endokrynol Pol. 2020; 71(2): 126–133.
  140. Lorek AJ, Steinhof-Radwańska K, Zarębski W, et al. The prevalence of hypoparathyroidism after thyroid surgery depending on the diagnosis, the extent of the procedure, and the presence of parathyroid glands in the postoperative examination. Endokrynol Pol. 2021; 72(5): 586–587.
  141. Hauch A, Al-Qurayshi Z, Randolph G, et al. Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Ann Surg Oncol. 2014; 21(12): 3844–3852.
  142. Kandil E, Noureldine SI, Abbas A, et al. The impact of surgical volume on patient outcomes following thyroid surgery. Surgery. 2013; 154(6): 1346–52; discussion 1352.
  143. Gunn A, Oyekunle T, Stang M, et al. Recurrent Laryngeal Nerve Injury After Thyroid Surgery: An Analysis of 11,370 Patients. J Surg Res. 2020; 255: 42–49.
  144. Gourin CG, Tufano RP, Forastiere AA, et al. Volume-based trends in thyroid surgery. Arch Otolaryngol Head Neck Surg. 2010; 136(12): 1191–1198.
  145. Loyo M, Tufano RP, Gourin CG. National trends in thyroid surgery and the effect of volume on short-term outcomes. Laryngoscope. 2013; 123(8): 2056–2063.
  146. Stavrakis AI, Ituarte PHG, Ko CY, et al. Surgeon volume as a predictor of outcomes in inpatient and outpatient endocrine surgery. Surgery. 2007; 142(6): 887–99; discussion 887.
  147. Nouraei SAR, Allen J, Kaddour H, et al. Vocal palsy increases the risk of lower respiratory tract infection in low-risk, low-morbidity patients undergoing thyroidectomy for benign disease: A big data analysis. Clin Otolaryngol. 2017; 42(6): 1259–1266.
  148. Almquist M, Ivarsson K, Nordenström E, et al. Mortality in patients with permanent hypoparathyroidism after total thyroidectomy. Br J Surg. 2018; 105(10): 1313–1318.
  149. Almquist M, Hallgrimsson P, Nordenström E, et al. Prediction of permanent hypoparathyroidism after total thyroidectomy. World J Surg. 2014; 38(10): 2613–2620.
  150. Bergenfelz A, Nordenström E, Almquist M. Morbidity in patients with permanent hypoparathyroidism after total thyroidectomy. Surgery. 2020; 167(1): 124–128.
  151. Bollerslev J, Rejnmark L, Marcocci C, et al. European Society of Endocrinology. European Society of Endocrinology Clinical Guideline: Treatment of chronic hypoparathyroidism in adults. Eur J Endocrinol. 2015; 173(2): G1–20.
  152. Jurecka-Lubieniecka B, Paliczka E, Czarniecka A, et al. [Hypoparathyroidism after surgery on thyroid cancer: is there a delayed chance for recovery after a prolonged period of substitutive therapy?]. Endokrynol Pol. 2006; 57(5): 501–508.
  153. Khan A, Koch C, Uum SV, et al. Standards of care for hypoparathyroidism in adults: a Canadian and International Consensus. Eur J Endocrinol. 2019; 180(3): P1–P22.
  154. Załącznik: Wymagania organizacyjne, sprzętowe i kadrowe (personel lekarski i nielekarski) dla jednostek patomorfologii. http://pol-pat.pl/pliki/files/wytyczne_i_standardy/wytyczne/04_wytyczne_tresc.pdf (Feb 5, 2022).
  155. Antic T, Taxy JB. Thyroid frozen section: supplementary or unnecessary? Am J Surg Pathol. 2013; 37(2): 282–286.
  156. Grisales J, Sanabria A. Utility of Routine Frozen Section of Thyroid Nodules Classified as Follicular Neoplasm. Am J Clin Pathol. 2020; 153(2): 210–220.
  157. Jozaghi Y, Richardson K, Anand S, et al. Frozen section analysis and sentinel lymph node biopsy in well differentiated thyroid cancer. J Otolaryngol Head Neck Surg. 2013; 42: 48.
  158. Kaczka K, Luks B, Jasion J, et al. Sentinel lymph node in thyroid tumors - own experience. Contemp Oncol (Pozn). 2013; 17(2): 184–189.
  159. Prajapati OmP, Verma AK, Sabaretnam M. Intraoperative frozen section for the evaluation of extrathyroidal extension in papillary thyroid cancer. World J Surg. 2015; 39(7): 1855.
  160. Odate T, Oishi N, Kawai M, et al. Progression of Papillary Thyroid Carcinoma to Anaplastic Carcinoma in Metastatic Lymph Nodes: Solid/Insular Growth and Hobnail Cell Change in Lymph Nodes Are Predictors of Subsequent Anaplastic Transformation. Endocr Pathol. 2021; 32(3): 347–356.
  161. Najah H, Tresallet C. Role of frozen section in the surgical management of indeterminate thyroid nodules. Gland Surg. 2019; 8(Suppl 2): S112–S117.
  162. Lloyd R, Osamura R, Kloppel G, Rosai J. (eds). WHO Classification of Tumors of Endocrine Organs. IARC, Lyon 2017.
  163. Amin M, Edge S, Greene F. et al, (eds). AJCC cancer staging manual. 8th ed. Springer International Publishing, New York 2017.
  164. Ghossein R, Barletta JA, Bullock M, et al. Data set for reporting carcinoma of the thyroid: recommendations from the International Collaboration on Cancer Reporting. Hum Pathol. 2021; 110: 62–72.
  165. Xu B, Wang L, Tuttle RM, et al. Prognostic impact of extent of vascular invasion in low-grade encapsulated follicular cell-derived thyroid carcinomas: a clinicopathologic study of 276 cases. Hum Pathol. 2015; 46(12): 1789–1798.
  166. Cao J, Hu JL, Chen C, et al. Vascular invasion is an independent prognostic factor for distant recurrence-free survival in papillary thyroid carcinoma: a matched-case comparative study. J Clin Pathol. 2016; 69(10): 872–877.
  167. Wreesmann VB, Nixon IJ, Rivera M, et al. Prognostic value of vascular invasion in well-differentiated papillary thyroid carcinoma. Thyroid. 2015; 25(5): 503–508.
  168. Ito Y, Hirokawa M, Masuoka H, et al. Prognostic factors of minimally invasive follicular thyroid carcinoma: extensive vascular invasion significantly affects patient prognosis. Endocr J. 2013; 60(5): 637–642.
  169. Ito Y, Tomoda C, Uruno T, et al. Minimal Extrathyroid Extension Does Not Affect the Relapse-Free Survival of Patients with Papillary Thyroid Carcinoma Measuring 4 cm or Less over the Age of 45 Years. Surg Today. 2005; 36(1): 12–18.
  170. Jin BJ, Kim MK, Ji YB, et al. Characteristics and significance of minimal and maximal extrathyroidal extension in papillary thyroid carcinoma. Oral Oncol. 2015; 51(8): 759–763.
  171. Hay I, Johnson T, Thompson G, et al. Minimal extrathyroid extension in papillary thyroid carcinoma does not result in increased rates of either cause-specific mortality or postoperative tumor recurrence. Surgery. 2016; 159(1): 11–21.
  172. Tam S, Amit M, Boonsripitayanon M, et al. Effect of Tumor Size and Minimal Extrathyroidal Extension in Patients with Differentiated Thyroid Cancer. Thyroid. 2018; 28(8): 982–990.
  173. Amit M, Boonsripitayanon M, Goepfert RP, et al. Extrathyroidal Extension: Does Strap Muscle Invasion Alone Influence Recurrence and Survival in Patients with Differentiated Thyroid Cancer? Ann Surg Oncol. 2018; 25(11): 3380–3388.
  174. Wong KS, Lorch JH, Alexander EK, et al. Prognostic Significance of Extent of Invasion in Poorly Differentiated Thyroid Carcinoma. Thyroid. 2019; 29(9): 1255–1261.
  175. Lang BHH, Shek TWH, Wan KY. Does microscopically involved margin increase disease recurrence after curative surgery in papillary thyroid carcinoma? J Surg Oncol. 2016; 113(6): 635–639.
  176. Kluijfhout WP, Pasternak JD, Kwon JS, et al. Microscopic Positive Tumor Margin Does Not Increase the Risk of Recurrence in Patients with T1-T2 Well-Differentiated Thyroid Cancer. Ann Surg Oncol. 2016; 23(5): 1446–1451.
  177. Wang LY, Ghossein R, Palmer FL, et al. Microscopic Positive Margins in Differentiated Thyroid Cancer Is Not an Independent Predictor of Local Failure. Thyroid. 2015; 25(9): 993–998.
  178. Urken ML, Mechanick JI, Sarlin J, et al. Pathologic reporting of lymph node metastases in differentiated thyroid cancer: a call to action for the College of American Pathologists. Endocr Pathol. 2014; 25(3): 214–218.
  179. Lango M, Flieder D, Arrangoiz R, et al. Extranodal extension of metastatic papillary thyroid carcinoma: correlation with biochemical endpoints, nodal persistence, and systemic disease progression. Thyroid. 2013; 23(9): 1099–1105.
  180. Yamashita H, Noguchi S, Murakami N, et al. Extracapsular invasion of lymph node metastasis. Cancer. 1999; 86(5): 842–849, doi: 10.1002/(sici)1097-0142(19990901)86:5<842::aid-cncr21>3.0.co;2-x.
  181. Randolph GW, Duh QY, Heller KS, et al. American Thyroid Association Surgical Affairs Committee’s Taskforce on Thyroid Cancer Nodal Surgery. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 2012; 22(11): 1144–1152.
  182. Wu MH, Shen WT, Gosnell J, et al. Prognostic significance of extranodal extension of regional lymph node metastasis in papillary thyroid cancer. Head Neck. 2015; 37(9): 1336–1343.
  183. Alpert EH, Wenig BM, Dewey EH, et al. Size distribution of metastatic lymph nodes with extranodal extension in patients with papillary thyroid cancer: a pilot study. Thyroid. 2015; 25(2): 238–241.
  184. Rowe ME, Ozbek U, Machado RA, et al. The Prevalence of Extranodal Extension in Papillary Thyroid Cancer Based on the Size of the Metastatic Node: Adverse Histologic Features Are Not Limited to Larger Lymph Nodes. Endocr Pathol. 2018; 29(1): 80–85.
  185. Du E, Wenig BM, Su HK, et al. Inter-Observer Variation in the Pathologic Identification of Extranodal Extension in Nodal Metastasis from Papillary Thyroid Carcinoma. Thyroid. 2016; 26(6): 816–819.
  186. Rosai J, DeLelis C. Tumors of the thyroid. In: Tumors of the thyroid and parathyroid gland. American Registry of Pathology: Maryland, Silver Spring 2014.
  187. Koperek O, Scheuba C, Cherenko M, et al. Desmoplasia in medullary thyroid carcinoma: a reliable indicator of metastatic potential. Histopathology. 2008; 52(5): 623–630.
  188. Koperek O, Asari R, Niederle B, et al. Desmoplastic stromal reaction in papillary thyroid microcarcinoma. Histopathology. 2011; 58(6): 919–924.
  189. Higgins SE, Barletta JA. Applications of Immunohistochemistry to Endocrine Pathology. Adv Anat Pathol. 2018; 25(6): 413–429.
  190. Chmielik E. Guzy tarczycy o nieznanym potencjale złośliwości. In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 129–142.
  191. Xu B, Fuchs TL, Ahmadi S, et al. International Medullary Thyroid Carcinoma Grading System: A Validated Grading System for Medullary Thyroid Carcinoma. J Clin Oncol. 2022; 40(1): 96–104.
  192. Fuchs TL, Nassour AJ, Glover A, et al. A Proposed Grading Scheme for Medullary Thyroid Carcinoma Based on Proliferative Activity (Ki-67 and Mitotic Count) and Coagulative Necrosis. Am J Surg Pathol. 2020; 44(10): 1419–1428.
  193. Alzumaili B, Xu B, Spanheimer PM, et al. Grading of medullary thyroid carcinoma on the basis of tumor necrosis and high mitotic rate is an independent predictor of poor outcome. Mod Pathol. 2020; 33(9): 1690–1701.
  194. Walczyk A, Kopczyński J, Gąsior-Perczak D, et al. Histopathology and immunohistochemistry as prognostic factors for poorly differentiated thyroid cancer in a series of Polish patients. PLoS One. 2020; 15(2): e0229264.
  195. Xu B, Fuchs T, Dogan S, et al. Dissecting Anaplastic Thyroid Carcinoma: A Comprehensive Clinical, Histologic, Immunophenotypic, and Molecular Study of 360 Cases. Thyroid. 2020; 30(10): 1505–1517.
  196. Ngo TNM, Le TTB, Le T, et al. Primary Versus Secondary Anaplastic Thyroid Carcinoma: Perspectives from Multi-institutional and Population-Level Data. Endocr Pathol. 2021; 32(4): 489–500.
  197. Bible KC, Kebebew E, Brierley J, et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid. 2021; 31(3): 337–386.
  198. Chmielik E. Przedinwazyjna forma raka brodawkowatego tarczycy (NIFTP w nowej klasyfikacji guzów tarczycy WHO 2017) w świetle sekwencjonowania nowej generacji-analiza patologiczno-molekularna. PGNE, Gliwice 2019.
  199. Zajkowska K, Kopczyński J, Góźdź S, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a problematic entity. Endocr Connect. 2020 [Epub ahead of print].
  200. Kuchareczko A, Kopczyński J, Kowalik A, et al. Are molecular tests necessary to diagnose NIFTP? Genes Cancer. 2021; 12: 39–50.
  201. Nikiforov YE, Baloch ZW, Hodak SP, et al. Change in Diagnostic Criteria for Noninvasive Follicular Thyroid Neoplasm With Papillarylike Nuclear Features. JAMA Oncol. 2018; 4(8): 1125–1126.
  202. Livhits MJ, Zhu CY, Kuo EJ, et al. Effectiveness of Molecular Testing Techniques for Diagnosis of Indeterminate Thyroid Nodules: A Randomized Clinical Trial. JAMA Oncol. 2021; 7(1): 70–77.
  203. Hier J, Avior G, Pusztaszeri M, et al. Molecular testing for cytologically suspicious and malignant (Bethesda V and VI) thyroid nodules to optimize the extent of surgical intervention: a retrospective chart review. J Otolaryngol Head Neck Surg. 2021; 50(1): 29.
  204. Lubitz CC, Sadow PM, Daniels GH, et al. Progress in Treating Advanced Thyroid Cancers in the Era of Targeted Therapy. Thyroid. 2021; 31(10): 1451–1462.
  205. Cabanillas ME, Ryder M, Jimenez C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr Rev. 2019; 40(6): 1573–1604.
  206. Subbiah V, Hu MI, Wirth LJ, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diab Endocrinol. 2021; 9(8): 491–501.
  207. Wirth LJ, Sherman E, Robinson B, et al. Efficacy of Selpercatinib in -Altered Thyroid Cancers. N Engl J Med. 2020; 383(9): 825–835.
  208. Luster M, Clarke SE, Dietlein M, et al. European Association of Nuclear Medicine (EANM). Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008; 35(10): 1941–1959.
  209. Handkiewicz-Junak D. Wskazania do pooperacyjnego leczenia jodem promieniotwórczym w raku tarczycy. In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 67–80.
  210. Schlumberger M, Catargi B, Borget I, et al. Tumeurs de la Thyroïde Refractaires Network for the Essai Stimulation Ablation Equivalence Trial. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012; 366(18): 1663–1673.
  211. Pacini F, Fuhrer D, Elisei R, et al. 2022 ETA Consensus Statement: What are the indications for post-surgical radioiodine therapy in differentiated thyroid cancer? Eur Thyroid J. 2022; 11(1).
  212. Schvartz C, Bonnetain F, Dabakuyo S, et al. Impact on overall survival of radioactive iodine in low-risk differentiated thyroid cancer patients. J Clin Endocrinol Metab. 2012; 97(5): 1526–1535.
  213. Leboulleux S, Bournaud C, Chougnet C, et al. Estimabl2: Is There a Need for Radioiodine Ablation in Low Risk Differentiated Thyroid Cancer (DTC) Patients?: Results From the French Randomized Phase III Prospective Trial on 776 Patients (NCT 01837745). J Endocrine Soc. 2021; 5(Suppl_1): A875–A875.
  214. Tuttle RM, Ahuja S, Avram AM, et al. Controversies, Consensus, and Collaboration in the Use of I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid. 2019; 29(4): 461–470.
  215. Lee YM, Park JH, Cho JW, et al. The definition of lymph node micrometastases in pathologic N1a papillary thyroid carcinoma should be revised. Surgery. 2019; 165(3): 652–656.
  216. Bardet S, Ciappuccini R, Quak E, et al. Prognostic value of microscopic lymph node involvement in patients with papillary thyroid cancer. J Clin Endocrinol Metab. 2015; 100(1): 132–140.
  217. Kauffmann RM, Hamner JB, Ituarte PHG, et al. Age greater than 60 years portends a worse prognosis in patients with papillary thyroid cancer: should there be three age categories for staging? BMC Cancer. 2018; 18(1): 316.
  218. Joseph KR, Edirimanne S, Eslick GD. Multifocality as a prognostic factor in thyroid cancer: A meta-analysis. Int J Surg. 2018; 50: 121–125.
  219. Dehbi HM, Mallick U, Wadsley J, et al. Recurrence after low-dose radioiodine ablation and recombinant human thyroid-stimulating hormone for differentiated thyroid cancer (HiLo): long-term results of an open-label, non-inferiority randomised controlled trial. Lancet Diabetes Endocrinol. 2019; 7(1): 44–51.
  220. Pacini F. Which patient with thyroid cancer deserves systemic therapy and when? Best Pract Res Clin Endocrinol Metab. 2017; 31(3): 291–294.
  221. Schlumberger M, Leboulleux S. Treatment of distant metastases from follicular cell-derived thyroid cancer. F1000Prime Rep. 2015; 7: 22.
  222. Nimmons GL, Funk GF, Graham MM, et al. Urinary iodine excretion after contrast computed tomography scan: implications for radioactive iodine use. JAMA Otolaryngol Head Neck Surg. 2013; 139(5): 479–482.
  223. Mishra A, Pradhan PK, Gambhir S, et al. Preoperative contrast-enhanced computerized tomography should not delay radioiodine ablation in differentiated thyroid carcinoma patients. J Surg Res. 2015; 193(2): 731–737.
  224. Kukulska A, Krajewska J, Kołosza Z, et al. The role of FDG-PET in localization of recurrent lesions of differentiated thyroid cancer (DTC) in patients with asymptomatic hyperthyroglobulinemia in a real clinical practice. Eur J Endocrinol. 2016; 175(5): 379–385.
  225. Alexander EK, Pearce EN, Brent GA, et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid. 2017; 27(3): 315–389.
  226. Mallick U, Harmer C, Yap B, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012; 366(18): 1674–1685.
  227. Schlumberger M, Catargi B, Borget I, et al. Tumeurs de la Thyroïde Refractaires Network for the Essai Stimulation Ablation Equivalence Trial. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012; 366(18): 1663–1673.
  228. Bartenstein P, Calabuig EC, Maini CL, et al. High-risk patients with differentiated thyroid cancer T4 primary tumors achieve remnant ablation equally well using rhTSH or thyroid hormone withdrawal. Thyroid. 2014; 24(3): 480–487.
  229. Leenhardt L, Leboulleux S, Bournaud C, et al. Recombinant Thyrotropin vs Levothyroxine Withdrawal in 131I Therapy of N1 Thyroid Cancer: A Large Matched Cohort Study (ThyrNod). J Clin Endocrinol Metab. 2019; 104(4): 1020–1028.
  230. Krajewska J, Jarzab M, Kukulska A, et al. Postoperative Radioiodine Treatment within 9 Months from Diagnosis Significantly Reduces the Risk of Relapse in Low-Risk Differentiated Thyroid Carcinoma. Nucl Med Mol Imaging. 2019; 53(5): 320–327.
  231. Verloop H, Louwerens M, Schoones JW, et al. Risk of hypothyroidism following hemithyroidectomy: systematic review and meta-analysis of prognostic studies. J Clin Endocrinol Metab. 2012; 97(7): 2243–2255.
  232. Xiao L, Wu J, Jiang L, et al. Is thyroid hormone supplementation avoidable for patients with low-risk papillary thyroid cancer after thyroid lobectomy? A two-center observational study. Clin Endocrinol (Oxf). 2022; 96(3): 413–418.
  233. Lee SJ, Song CM, Ji YB, et al. Risk factors for hypothyroidism and thyroid hormone replacement after hemithyroidectomy in papillary thyroid carcinoma. Langenbecks Arch Surg. 2021; 406(4): 1223–1231.
  234. Barczyński M, Konturek A, Gołkowski F, et al. Five-year follow-up of a randomized clinical trial of unilateral thyroid lobectomy with or without postoperative levothyroxine treatment. World J Surg. 2010; 34(6): 1232–1238.
  235. Diessl S, Holzberger B, Mäder U, et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2012; 76(4): 586–592.
  236. McGriff NJ, Csako G, Gourgiotis L, et al. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med. 2002; 34(7-8): 554–564.
  237. Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006; 16(12): 1229–1242.
  238. Pujol P, Daures JP, Nsakala N, et al. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab. 1996; 81(12): 4318–4323.
  239. Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid. 2010; 20(2): 135–146.
  240. Hovens GC, Stokkel MP, Kievit J, et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab. 2007; 92(7): 2610–2615.
  241. Sugitani I, Fujimoto Y. Does postoperative thyrotropin suppression therapy truly decrease recurrence in papillary thyroid carcinoma? A randomized controlled trial. J Clin Endocrinol Metab. 2010; 95(10): 4576–4583.
  242. Tuttle RM, Tala H, Shah J, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010; 20(12): 1341–1349.
  243. Kowalska A, Walczyk A, Pałyga I, et al. The Delayed Risk Stratification System in the Risk of Differentiated Thyroid Cancer Recurrence. PLoS One. 2016; 11(4): e0153242.
  244. Krajewska J, Chmielik E, Jarząb B. Dynamic risk stratification in the follow-up of thyroid cancer: what is still to be discovered in 2017? Endocr Relat Cancer. 2017; 24(11): R387–R402.
  245. Castagna MG, Maino F, Cipri C, et al. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol. 2011; 165(3): 441–446.
  246. Vaisman F, Momesso D, Bulzico DA, et al. Spontaneous remission in thyroid cancer patients after biochemical incomplete response to initial therapy. Clin Endocrinol (Oxf). 2012; 77(1): 132–138.
  247. Vaisman F, Tala H, Grewal R, et al. In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response. Thyroid. 2011; 21(12): 1317–1322.
  248. Malandrino P, Latina A, Marescalco S, et al. Risk-adapted management of differentiated thyroid cancer assessed by a sensitive measurement of basal serum thyroglobulin. J Clin Endocrinol Metab. 2011; 96(6): 1703–1709.
  249. Spencer C, LoPresti J, Fatemi S. How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. Curr Opin Endocrinol Diabetes Obes. 2014; 21(5): 394–404.
  250. Eustatia-Rutten CFA, Smit JWA, Romijn JA, et al. Diagnostic value of serum thyroglobulin measurements in the follow-up of differentiated thyroid carcinoma, a structured meta-analysis. Clin Endocrinol (Oxf). 2004; 61(1): 61–74.
  251. Webb RC, Howard RS, Stojadinovic A, et al. The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: a meta-analysis involving 3947 patients. J Clin Endocrinol Metab. 2012; 97(8): 2754–2763.
  252. Lamartina L, Montesano T, Trulli F, et al. Papillary thyroid carcinomas with biochemical incomplete or indeterminate responses to initial treatment: repeat stimulated thyroglobulin assay to identify disease-free patients. Endocrine. 2016; 54(2): 467–475.
  253. Schlumberger M, Hitzel A, Toubert ME, et al. Comparison of Seven Serum Thyroglobulin Assays in the Follow-Up of Papillary and Follicular Thyroid Cancer Patients. J Clin Endocrinol Metab. 2007; 92(7): 2487–2495.
  254. Spencer CA, Takeuchi M, Kazarosyan M, et al. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1998; 83(4): 1121–1127.
  255. Spencer CA. Challenges of serum thyroglobulin (Tg) measurement in the presence of Tg autoantibodies. J Clin Endocrinol Metab. 2004; 89(8): 3702–3704.
  256. Rosario PW, Carvalho M, Mourão GF, et al. Comparison of Antithyroglobulin Antibody Concentrations Before and After Ablation with 131I as a Predictor of Structural Disease in Differentiated Thyroid Carcinoma Patients with Undetectable Basal Thyroglobulin and Negative Neck Ultrasonography. Thyroid. 2016; 26(4): 525–531.
  257. Spencer C, Petrovic I, Fatemi S, et al. Serum thyroglobulin (Tg) monitoring of patients with differentiated thyroid cancer using sensitive (second-generation) immunometric assays can be disrupted by false-negative and false-positive serum thyroglobulin autoantibody misclassifications. J Clin Endocrinol Metab. 2014; 99(12): 4589–4599.
  258. Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods - Strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013; 27(5): 701–712.
  259. Chindris AM, Diehl NN, Crook JE, et al. Undetectable Sensitive Serum Thyroglobulin (<0.1 ng/ml) in 163 Patients with Follicular Cell-Derived Thyroid Cancer: Results of rhTSH Stimulation and Neck Ultrasonography and Long-Term Biochemical and Clinical Follow-Up. J Clin Endocrinol Metab. 2012; 97(8): 2714–2723.
  260. Durante C, Montesano T, Attard M, et al. PTC Study Group. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab. 2012; 97(8): 2748–2753.
  261. Nascimento C, Borget I, Troalen F, et al. Ultrasensitive serum thyroglobulin measurement is useful for the follow-up of patients treated with total thyroidectomy without radioactive iodine ablation. Eur J Endocrinol. 2013; 169(5): 689–693.
  262. Ritter A, Mizrachi A, Bachar G, et al. Detecting Recurrence Following Lobectomy for Thyroid Cancer: Role of Thyroglobulin and Thyroglobulin Antibodies. J Clin Endocrinol Metab. 2020; 105(6).
  263. Krajewska J, Czarniecka A, Jarzab B, et al. [Relapse of differentiated thyroid carcinoma in low-risk patients]. Endokrynol Pol. 2006; 57(4): 386–391.
  264. Torlontano M, Crocetti U, D'Aloiso L, et al. Serum thyroglobulin and 131I whole body scan after recombinant human TSH stimulation in the follow-up of low-risk patients with differentiated thyroid cancer. Eur J Endocrinol. 2003; 148(1): 19–24.
  265. Frasoldati A, Pesenti M, Gallo M, et al. Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer. 2003; 97(1): 90–96.
  266. Gubała E, Olczyk T, Olczyk A, et al. [Indications for surgery of thyroid cancer based on bioptate molecular examination]. Endokrynol Pol. 2006; 57(4): 396–402.
  267. Leboulleux S, Schroeder PR, Busaidy NL, et al. Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab. 2009; 94(4): 1310–1316.
  268. Almeida LS, Araújo ML, Santos AO, et al. Head-to-head comparison of F-18 FDG PET/CT in radioidine refractory thyroid cancer patients with elevated versus suppressed TSH levels a pilot study. Heliyon. 2020; 6(3): e03450.
  269. Mazzaferri E, Jhiang S. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. American J Med. 1994; 97(5): 418–428.
  270. Lamartina L, Handkiewicz-Junak D. Follow-up of low risk thyroid cancer patients: can we stop follow-up after 5 years of complete remission? Eur J Endocrinol. 2020; 182(5): D1–D16.
  271. Lamartina L, Leboulleux S, Terroir M, et al. An update on the management of low-risk differentiated thyroid cancer. Endocr Relat Cancer. 2019; 26(11): R597–R610.
  272. Haymart MR, Esfandiari NH, Stang MT, et al. Controversies in the Management of Low-Risk Differentiated Thyroid Cancer. Endocr Rev. 2017; 38(4): 351–378.
  273. Krajewska J, Samborski K. Monitorowanie chorego po leczeniu pierwotnym raka tarczycy niskiego ryzyka. In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 51–66.
  274. Kotecka-Blicharz A, Krajewska J. Postępowanie z chorymi na guzy tarczycy o nieustalonym/niepewnym potencjale złośliwości. In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 161–165.
  275. Krajewska J, Handkiewicz-Junak D. Postępy w leczeniu zaawansowanego raka tarczycy. In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 81–118.
  276. Brierley J, Sherman E. The role of external beam radiation and targeted therapy in thyroid cancer. Semin Radiat Oncol. 2012; 22(3): 254–262.
  277. Mauri G, Cova L, Tondolo T, et al. Percutaneous laser ablation of metastatic lymph nodes in the neck from papillary thyroid carcinoma: preliminary results. J Clin Endocrinol Metab. 2013; 98(7): E1203–E1207.
  278. Xue F, Li D, Hu C, et al. Application of intensity-modulated radiotherapy in unresectable poorly differentiated thyroid carcinoma. Oncotarget. 2017; 8(9): 15934–15942.
  279. Chow SM, Yau S, Kwan CK, et al. Local and regional control in patients with papillary thyroid carcinoma: specific indications of external radiotherapy and radioactive iodine according to T and N categories in AJCC 6th edition. Endocr Relat Cancer. 2006; 13(4): 1159–1172.
  280. Kukulska A, Krajewska J, Kolosza Z, et al. The role of postoperative adjuvant radiotherapy in local recurrence risk in medullary thyroid carcinoma. Endocrine Connect. 2020; 9(1): 1–8.
  281. Kim T, Chung KW, Lee Y, et al. The effect of external beam radiotherapy volume on locoregional control in patients with locoregionally advanced or recurrent nonanaplastic thyroid cancer. Radiat Oncol. 2010; 5: 69.
  282. Schuck A, Biermann M, Pixberg MK, et al. Acute toxicity of adjuvant radiotherapy in locally advanced differentiated thyroid carcinoma. First results of the multicenter study differentiated thyroid carcinoma (MSDS). Strahlenther Onkol. 2003; 179(12): 832–839.
  283. Schwartz DL, Lobo MJ, Ang KK, et al. Postoperative external beam radiotherapy for differentiated thyroid cancer: outcomes and morbidity with conformal treatment. Int J Radiat Oncol Biol Phys. 2009; 74(4): 1083–1091.
  284. Lee EK, Lee YJ, Jung YS, et al. Postoperative simultaneous integrated boost-intensity modulated radiation therapy for patients with locoregionally advanced papillary thyroid carcinoma: preliminary results of a phase II trial and propensity score analysis. J Clin Endocrinol Metab. 2015; 100(3): 1009–1017.
  285. Sun XS, Guevara N, Fakhry N, et al. [Radiation therapy in thyroid cancer]. Cancer Radiother. 2013; 17(3): 233–43; quiz 255.
  286. Giuliani M, Brierley J. Indications for the use of external beam radiation in thyroid cancer. Curr Opin Oncol. 2014; 26(1): 45–50.
  287. Goffredo P, Robinson TJ, Youngwirth LM, et al. Intensity-modulated radiation therapy use for the localized treatment of thyroid cancer: Nationwide practice patterns and outcomes. Endocrine. 2016; 53(3): 761–773.
  288. So K, Smith RE, Davis SR. Radiotherapy in well-differentiated thyroid cancer: is it underutilized? ANZ J Surg. 2016; 86(9): 696–700.
  289. Hamilton SN, Tran E, Berthelet E, et al. The role of external beam radiation therapy in well-differentiated thyroid cancer. Expert Rev Anticancer Ther. 2017; 17(10): 905–910.
  290. Mazzarotto R, Cesaro MG, Lora O, et al. The role of external beam radiotherapy in the management of differentiated thyroid cancer. Biomed Pharmacother. 2000; 54(6): 345–349.
  291. Brierley JD, Tsang RW. External beam radiation therapy for thyroid cancer. Endocrinol Metab Clin North Am. 2008; 37(2): 497–509, xi.
  292. Kukulska A, Krajewska J, Kołosza Z, et al. Stereotactic radiotherapy is a useful treatment option for patients with medullary thyroid cancer. BMC Endocr Disord. 2021; 21(1): 160.
  293. Shimaoka K, Schoenfeld DA, Dewys WD, et al. A Randomized Trial of Doxorubicin Versus Doxorubicin Plus Cisplatin in Patients With Advanced Thyroid Carcinoma. Cancer. 1985; 56(9): 2155–2160, doi: 10.1002/1097-0142(19851101)56:9<2155::aid-cncr2820560903>3.0.co;2-e.
  294. Ahuja S, Ernst H. Chemotherapy of thyroid carcinoma. J Endocrinol Invest. 1987; 10(3): 303–310.
  295. De Besi P, Busnardo B, Toso S, et al. Combined chemotherapy with bleomycin, adriamycin, and platinum in advanced thyroid cancer. J Endocrinol Invest. 1991; 14(6): 475–480.
  296. Hoskin PJ, Harmer C. Chemotherapy for thyroid cancer. Radiother Oncol. 1987; 10(3): 187–194.
  297. Pacini F, Fontanelli M, Fugazzola L, et al. Routine measurement of serum calcitonin in nodular thyroid diseases allows the preoperative diagnosis of unsuspected sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1994; 78(4): 826–829.
  298. Pacini F, Vitti P, Martino E, et al. Treatment of refractory thyroid cancer with adriamycin. Drugs Exp Clin Res. 1984; 10: 911–914.
  299. Asakawa H, Kobayashi T, Komoike Y, et al. Chemosensitivity of anaplastic thyroid carcinoma and poorly differentiated thyroid carcinoma. Anticancer Res. 1997; 17(4A): 2757–2762.
  300. Ibrahimpasic T, Ghossein R, Shah JP, et al. Poorly Differentiated Carcinoma of the Thyroid Gland: Current Status and Future Prospects. Thyroid. 2019; 29(3): 311–321.
  301. Brose M, Nutting C, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014; 384(9940): 319–328.
  302. Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015; 372(7): 621–630.
  303. Brose M, Robinson B, Sherman S, et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021; 22(8): 1126–1138.
  304. Drilon A, Laetsch TW, Kummar S, et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med. 2018; 378(8): 731–739.
  305. Hong D, DuBois S, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020; 21(4): 531–540.
  306. Eng C, Clayton D, Schuffenecker I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996; 276(19): 1575–1579.
  307. Dralle H, Machens A. Surgical management of the lateral neck compartment for metastatic thyroid cancer. Curr Opin Oncol. 2013; 25(1): 20–26.
  308. Machens A, Dralle H. Surgical Treatment of Medullary Thyroid Cancer. Recent Results Cancer Res. 2015; 204: 187–205.
  309. Castinetti F, Maia AL, Peczkowska M, et al. The penetrance of MEN2 pheochromocytoma is not only determined by mutations. Endocr Relat Cancer. 2017; 24(8): L63–L67.
  310. Thosani S, Ayala-Ramirez M, Palmer L, et al. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 2013; 98(11): E1813–E1819.
  311. Lenders J, Eisenhofer G, Mannelli M, et al. Phaeochromocytoma. Lancet. 2005; 366(9486): 665–675.
  312. Kotecka-Blicharz A, Hasse-Lazar K, Jurecka-Lubieniecka B, et al. Occurrence of phaeochromocytoma tumours in RET mutation carriers — a single-centre study. Endokrynol Pol. 2016; 67(1): 54–58.
  313. Amodru V, Taieb D, Guerin C, et al. MEN2-related pheochromocytoma: current state of knowledge, specific characteristics in MEN2B, and perspectives. Endocrine. 2020; 69(3): 496–503.
  314. Lorenz K, Elwerr M, Machens A, et al. Hypercalcitoninemia in thyroid conditions other than medullary thyroid carcinoma: a comparative analysis of calcium and pentagastrin stimulation of serum calcitonin. Langenbecks Arch Surg. 2013; 398(3): 403–409.
  315. Machens A, Dralle H. Surgical cure rates of sporadic medullary thyroid cancer in the era of calcitonin screening. Eur J Endocrinol. 2016; 175(3): 219–228.
  316. Wiench M, Wygoda Z, Gubala E, et al. Estimation of risk of inherited medullary thyroid carcinoma in apparent sporadic patients. J Clin Oncol. 2001; 19(5): 1374–1380.
  317. Fugazzola L, De Leo S, Perrino M. The optimal range of RET mutations to be tested: European comments to the guidelines of the American Thyroid Association. Thyroid Res. 2013; 6 Suppl 1: S8.
  318. Hofstra RM, Landsvater RM, Ceccherini I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994; 367(6461): 375–376.
  319. Lewinski A, Jarząb B, Płaczkiewicz-Jankowska E. Zespoly wielogruczołowe. In: Gajewski P, Budaj A, Leśniak W. et al. ed. Interna Szczeklika 2021. Medycyna Praktyczna, Kraków 2021: 1513–1520.
  320. Romei C, Mariotti S, Fugazzola L, et al. ItaMEN network. Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. Eur J Endocrinol. 2010; 163(2): 301–308.
  321. Castinetti F, Waguespack S, Machens A, et al. Natural history, treatment, and long-term follow up of patients with multiple endocrine neoplasia type 2B: an international, multicentre, retrospective study. Lancet Diabetes Endocrinol. 2019; 7(3): 213–220.
  322. Jarząb B, Oczko-Wojciechowska M, Krajewska J, Czarniecka A. Rak rdzeniasty tarczycy — od biologii molekularnej do decyzji lekarskiej. In: Jarząb B. ed. Nowe strategie leczenia raka tarczycy. Via Medica, Gdańsk 2019: 92–103.
  323. Włoch J, Wygoda Z, Wiench M, et al. Profilaktyczne całkowite wycięcie tarczycy u nosicieli mutacji w protoonkogenie RET powodujących dziedzicznego raka rdzeniastego. Pol Przegl Chir. 2001; 73: 569–585.
  324. Skinner MA, Moley JA, Dilley WG, et al. Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A. N Engl J Med. 2005; 353(11): 1105–1113.
  325. Oczko-Wojciechowska M, Hasse-Lazar K, Samborski K, Krajewska J. Dziedziczny rak rdzeniasty tarczycy: postępy diagnostyki DNA i interpretacja wyników badań. In: Jarząb B. ed. Rak tarczycy. Aktualne metody diagnostyki i leczenia. PZWL Wydawnictwo Lekarskie, Warszawa 2022: 183–185.
  326. Toledo RA, Hatakana R, Lourenço DM, et al. Comprehensive assessment of the disputed RET Y791F variant shows no association with medullary thyroid carcinoma susceptibility. Endocr Relat Cancer. 2015; 22(1): 65–76.
  327. Elisei R, Tacito A, Ramone T, et al. Twenty-Five Years Experience on RET Genetic Screening on Hereditary MTC: An Update on The Prevalence of Germline RET Mutations. Genes (Basel). 2019; 10(9).
  328. Maciel RMB, Camacho CP, Assumpção LVM, et al. Genotype and phenotype landscape of MEN2 in 554 medullary thyroid cancer patients: the BrasMEN study. Endocr Connect. 2019; 8(3): 289–298.
  329. Jarzab B, Szpak-Ulczok S, Wloch J, et al. Timing and criteria for prophylactic thyroidectomy in asymptomatic RET carriers - the role of Ct serum level. Thyroid Res. 2013; 6 Suppl 1: S9.
  330. Colombo C, Verga U, Mian C, et al. Comparison of calcium and pentagastrin tests for the diagnosis and follow-up of medullary thyroid cancer. J Clin Endocrinol Metab. 2012; 97(3): 905–913.
  331. Castinetti F, Qi XP, Walz MK, et al. Outcomes of adrenal-sparing surgery or total adrenalectomy in phaeochromocytoma associated with multiple endocrine neoplasia type 2: an international retrospective population-based study. Lancet Oncol. 2014; 15(6): 648–655.
  332. Hasse-Lazar K, Zeman M, Kotecka-Blicharz A, et al. Laparoscopic cortical-sparing adrenal surgery in pheochromocytomas associated with hereditary neoplasia syndromes. Endokrynol Pol. 2020; 71(6): 518–523.
  333. Neumann HPH, Tsoy U, Bancos I, et al. International Bilateral-Pheochromocytoma-Registry Group. Comparison of Pheochromocytoma-Specific Morbidity and Mortality Among Adults With Bilateral Pheochromocytomas Undergoing Total Adrenalectomy vs Cortical-Sparing Adrenalectomy. JAMA Netw Open. 2019; 2(8): e198898.
  334. Uslar T, San Francisco IF, Olmos R, et al. Clinical Presentation and Perioperative Management of Pheochromocytomas and Paragangliomas: A 4-Decade Experience. J Endocr Soc. 2021; 5(10): bvab073.
  335. Schuffenecker I, Virally-Monod M, Brohet R, et al. Risk and penetrance of primary hyperparathyroidism in multiple endocrine neoplasia type 2A families with mutations at codon 634 of the RET proto-oncogene. Groupe D'etude des Tumeurs à Calcitonine. J Clin Endocrinol Metab. 1998; 83(2): 487–491.
  336. Larsen LV, Mirebeau-Prunier D, Imai T, et al. Primary hyperparathyroidism as first manifestation in multiple endocrine neoplasia type 2A: an international multicenter study. Endocr Connect. 2020; 9(6): 489–497.
  337. Alevizaki M. Management of hyperparathyroidism (PHP) in MEN2 syndromes in Europe. Thyroid Res. 2013; 6 Suppl 1: S10.
  338. Gawlik T, d'Amico A, Szpak-Ulczok S, et al. The prognostic value of tumor markers doubling times in medullary thyroid carcinoma - preliminary report. Thyroid Res. 2010; 3(1): 10.
  339. Yeh T, Yeung M, Sherman E, et al. Structural Doubling Time Predicts Overall Survival in Patients with Medullary Thyroid Cancer in Patients with Rapidly Progressive Metastatic Medullary Thyroid Cancer Treated with Molecular Targeted Therapies. Thyroid. 2020; 30(8): 1112–1119.
  340. Castinetti F, Taïeb D. Positron Emission Tomography Imaging in Medullary Thyroid Carcinoma: Time for Reappraisal? Thyroid. 2021; 31(2): 151–155.
  341. Czepczyński R, Parisella MG, Kosowicz J, et al. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2007; 34(10): 1635–1645.
  342. Hayes AR, Crawford A, Al Riyami K, et al. Metastatic Medullary Thyroid Cancer: The Role of 68Gallium-DOTA-Somatostatin Analogue PET/CT and Peptide Receptor Radionuclide Therapy. J Clin Endocrinol Metab. 2021; 106(12): e4903–e4916.
  343. Kayano D, Kinuya S. Current Consensus on I-131 MIBG Therapy. Nucl Med Mol Imaging. 2018; 52(4): 254–265.
  344. Maghsoomi Z, Emami Z, Malboosbaf R, et al. Efficacy and safety of peptide receptor radionuclide therapy in advanced radioiodine-refractory differentiated thyroid cancer and metastatic medullary thyroid cancer: a systematic review. BMC Cancer. 2021; 21(1): 579.
  345. Vainas I, Koussis C, Pazaitou-Panayiotou K, et al. Somatostatin receptor expression in vivo and response to somatostatin analog therapy with or without other antineoplastic treatments in advanced medullary thyroid carcinoma. J Exp Clin Cancer Res. 2004; 23(4): 549–559.
  346. Díez JJ, Iglesias P. Somatostatin analogs in the treatment of medullary thyroid carcinoma. J Endocrinol Invest. 2002; 25(9): 773–778.
  347. Wells SA, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012; 30(2): 134–141.
  348. Kreissl MC, Bastholt L, Elisei R, et al. Efficacy and Safety of Vandetanib in Progressive and Symptomatic Medullary Thyroid Cancer: Post Hoc Analysis From the ZETA Trial. J Clin Oncol. 2020; 38(24): 2773–2781.
  349. Hu MI, Elisei R, Dedecjus M, et al. Safety and efficacy of two starting doses of vandetanib in advanced medullary thyroid cancer. Endocr Relat Cancer. 2019; 26(2): 241–250.
  350. Elisei R, Schlumberger MJ, Müller SP, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013; 31(29): 3639–3646.
  351. Schlumberger M, Elisei R, Müller S, et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann Oncol. 2017; 28(11): 2813–2819.
  352. Oczko-Wojciechowska M, Pfeifer A, Rusinek D, et al. The prevalence of somatic RAS mutations in medullary thyroid cancer — a Polish population study. Endokrynol Pol. 2015; 66(2): 121–125.
  353. Moura MM, Cavaco BM, Pinto AE, et al. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br J Cancer. 2009; 100(11): 1777–1783.
  354. Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008; 93(3): 682–687.
  355. Ciampi R, Romei C, Ramone T, et al. Genetic Landscape of Somatic Mutations in a Large Cohort of Sporadic Medullary Thyroid Carcinomas Studied by Next-Generation Targeted Sequencing. iScience. 2019; 20: 324–336.
  356. Sherman SI, Clary DO, Elisei R, et al. Correlative analyses of RET and RAS mutations in a phase 3 trial of cabozantinib in patients with progressive, metastatic medullary thyroid cancer. Cancer. 2016; 122(24): 3856–3864.
  357. Carlomagno F, Guida T, Anaganti S, et al. Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene. 2004; 23(36): 6056–6063.
  358. Smallridge RC, Ain KB, Asa SL, et al. American Thyroid Association Anaplastic Thyroid Cancer Guidelines Taskforce. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2012; 22(11): 1104–1139.
  359. Sosa JA, Elisei R, Jarzab B, et al. Randomized safety and efficacy study of fosbretabulin with paclitaxel/carboplatin against anaplastic thyroid carcinoma. Thyroid. 2014; 24(2): 232–240.
  360. Shimaoka K, Schoenfeld D, Dewys W, et al. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985; 56(9): 2155–2160, doi: 10.1002/1097-0142(19851101)56:9<2155::aid-cncr2820560903>3.0.co;2-e.
  361. Ain KB, Egorin MJ, DeSimone PA. Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Collaborative Anaplastic Thyroid Cancer Health Intervention Trials (CATCHIT) Group. Thyroid. 2000; 10(7): 587–594.
  362. Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J Clin Oncol. 2018; 36(1): 7–13.
  363. Walsh S, Lowery AJ, Evoy D, et al. Thyroid lymphoma: recent advances in diagnosis and optimal management strategies. Oncologist. 2013; 18(9): 994–1003.
  364. Büttner M, Hinz A, Singer S, et al. Quality of life of patients more than 1 year after surgery for thyroid cancer. Hormones (Athens). 2020; 19(2): 233–243.
  365. Büttner M, Locati LD, Pinto M, et al. Quality of Life in Patients With Hypoparathyroidism After Treatment for Thyroid Cancer. J Clin Endocrinol Metab. 2020; 105(12).
  366. Sawicka-Gutaj N, Watt T, Sowiński J, et al. ThyPROpl — The Polish version of the thyroid-specific quality of life questionnaire ThyPRO. Endokrynol Pol. 2015; 66(4): 367–380.
  367. Nolte S, Liegl G, Petersen MA, et al. EORTC Quality of Life Group. General population normative data for the EORTC QLQ-C30 health-related quality of life questionnaire based on 15,386 persons across 13 European countries, Canada and the Unites States. Eur J Cancer. 2019; 107: 153–163.
  368. Singer S, Jordan S, Locati LD, et al. EORTC Quality of Life Group, the EORTC Head and Neck Cancer Group, and the EORTC Endocrine Task Force. The EORTC module for quality of life in patients with thyroid cancer: phase III. Endocr Relat Cancer. 2017; 24(4): 197–207.
  369. Singer S, Amdal CD, Hammerlid E, et al. EORTC Quality of Life and the EORTC Head and Neck Cancer Groups. International validation of the revised European Organisation for Research and Treatment of Cancer Head and Neck Cancer Module, the EORTC QLQ-HN43: Phase IV. Head Neck. 2019; 41(6): 1725–1737.
  370. van Velsen EFS, Massolt ET, Heersema H, et al. Longitudinal analysis of quality of life in patients treated for differentiated thyroid cancer. Eur J Endocrinol. 2019; 181(6): 671–679.
  371. Yang S, Xu X. Anxiety and quality of life among papillary thyroid cancer patients awaiting final pathology results after surgery. Endocrine. 2022.
  372. ESMO Standard Operating Procedures (SOPs) for Clinical Practice Guidelines (CPGs) and ESMO Magnitude of Clinical Benefit (ESMO-MCBS) and ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) scores. ESMO Guidelines Committee (GLC). https://www.esmo.org/content/download/77789/1426712/file/ESMO-Clinical-Practice-Guidelines-Standard-Operating-Procedures.pdf (Mar 7, 2022).
  373. Grant EG, Tessler FN, Hoang JK, et al. Thyroid Ultrasound Reporting Lexicon: White Paper of the ACR Thyroid Imaging, Reporting and Data System (TIRADS) Committee. J Am Coll Radiol. 2015; 12(12 Pt A): 1272–1279.
  374. Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol. 2017; 14(5): 587–595.
  375. Cosgrove D, Barr R, Bojunga J, et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med Biol. 2017; 43(1): 4–26.
  376. Asteria C, Giovanardi A, Pizzocaro A, et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008; 18(5): 523–531.
  377. Stanek-Widera A, Biskup-Fruzynska M, Zembala-Nozynska E, et al. Clinical importance of follicular lesion of undetermined significance (diagnostic category III according to Bethesda System) diagnosed in fine needle aspiration biopsy. Endokrynol Pol. 2016; 67(1): 12–16.
  378. Stanek-Widera A, Biskup-Frużyńska M, Zembala-Nożyńska E, et al. The diagnosis of cancer in thyroid fine needle aspiration biopsy. Surgery, repeat biopsy or specimen consultation? Pol J Pathol. 2016; 1: 19–23.
  379. Brito JP, Ito Y, Miyauchi A, et al. A Clinical Framework to Facilitate Risk Stratification When Considering an Active Surveillance Alternative to Immediate Biopsy and Surgery in Papillary Microcarcinoma. Thyroid. 2016; 26(1): 144–149.
  380. Berdelou A, Lamartina L, Klain M, et al. Treatment of refractory thyroid cancer. Endocr Relat Cancer. 2018; 25(4): R209–R223.
  381. Krajewska J, Paliczka-Cieslik E, Jarzab B. Managing tyrosine kinase inhibitors side effects in thyroid cancer. Expert Rev Endocrinol Metab. 2017; 12(2): 117–127.
  382. Walewski J, Dziurda D, Bidziński M, et al. Consensus on methods of development of clinical practice guidelines in oncology under the auspices of Maria Sklodowska-Curie National Research Institute of Oncology and the Agency for Health Technology Assessment and Tariff System. Nowotwory. J Oncol. 2022; 72(1): 44–50.
  383. Walewski J, Dziurda D, Bidziński M, et al. Consensus on methods of development of clinical practice guidelines in oncology under the auspices of Maria Sklodowska-Curie National Research Institute of Oncology and the Agency for Health Technology Assessment and Tariff System. Nowotwory J Oncol. 2022; 72(1): 44–50.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl