Vol 73, No 1 (2022)
Review paper
Published online: 2022-01-24

open access

Page views 7392
Article views/downloads 2487
Get Citation

Connect on Social Media

Connect on Social Media

Thyrotoxic myopathy: research status, diagnosis, and treatment

Han Cui1, Xiuwei Zhang1
Pubmed: 35119093
Endokrynol Pol 2022;73(1):157-162.

Abstract

Thyrotoxic myopathy is hyperthyroidism accompanied by muscle lesions. It is recognized as the general term for a group of symptoms with several main manifestations of several hyperthyroidism patients in the course (e.g. muscle weakness, muscle paralysis, or pain).

From the clinical perspective, it may only be manifested as muscle-related symptoms. The symptoms of high metabolic syndrome (e.g. thyrotoxicosis) are absent, obscured, or relatively delayed, so it can be easily misdiagnosed. Accordingly, patients experiencing the first symptom of myopathy should concentrate on the possibility of thyrotoxic myopathy. Given the clinical characteristics, thyrotoxic myopathy can be devided into chronic thyrotoxic myopathy, thyrotoxicosis with periodic paralysis, acute thyrotoxic myopathy, hyperthyroidism with myasthenia gravis, as well as infiltrating exophthalmos with ophthalmoplegia. In this paper, we review thyrotoxic myopathy research status, diagnoses, and treatments.

Article available in PDF format

View PDF Download PDF file

References

  1. Kammer G, Hamilton C. Acute bulbar muscle dysfunction and hyperthyroidism. Am J Med. 1974; 56(4): 464–470.
  2. Lin SH. Thyrotoxic Periodic Paralysis. Mayo Clinic Proceedings. 2005; 80(1): 99–105.
  3. Kung AWC. Clinical review: Thyrotoxic periodic paralysis: a diagnostic challenge. J Clin Endocrinol Metab. 2006; 91(7): 2490–2495.
  4. Hara K, Miyata H, Motegi T, et al. Thyrotoxicosis Presenting as Unilateral Drop Foot. Intern Med. 2017; 56(15): 2053–2056.
  5. Ruff RL, Weissmann J. Endocrine myopathies. Neurol Clin. 1988; 6(3): 575–592.
  6. Aguer C, Harper ME. Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects. Best Pract Res Clin Endocrinol Metab. 2012; 26(6): 805–819.
  7. HOCH FL. Biochemical actions of thyroid hormones. Physiol Rev. 1962; 42: 605–673.
  8. Lawrie RA. The relation of energy-rich phosphate in muscle to myoglobin and to cytochrome-oxidase activity. Biochem J. 1953; 55(2): 305–309.
  9. Harper ME, Seifert EL. Thyroid hormone effects on mitochondrial energetics. Thyroid. 2008; 18(2): 145–156.
  10. Korényi-Both A, Korényi-Both I, Kayes BC. Thyrotoxic myopathy. Pathomorphological observations of human material and experimentally induced thyrotoxicosis in rats. Acta Neuropathol. 1981; 53(3): 237–248.
  11. Kang MH. 'Kir'-ing thyrotoxic periodic paralysis. Clin Genet. 2010; 78(2): 136–138.
  12. Maciel RMB, Lindsey SC, Dias da Silva MR. Novel etiopathophysiological aspects of thyrotoxic periodic paralysis. Nat Rev Endocrinol. 2011; 7(11): 657–667.
  13. Kelley DE, Gharib H, Kennedy FP, et al. Thyrotoxic periodic paralysis. Report of 10 cases and review of electromyographic findings. Arch Intern Med. 1989; 149(11): 2597–2600.
  14. Zhao SX, Liu W, Liang J, et al. China Consortium for the Genetics of Autoimmune Thyroid Disease. Assessment of Molecular Subtypes in Thyrotoxic Periodic Paralysis and Graves Disease Among Chinese Han Adults: A Population-Based Genome-Wide Association Study. JAMA Netw Open. 2019; 2(5): e193348.
  15. Falhammar H, Thorén M, Calissendorff J. Thyrotoxic periodic paralysis: clinical and molecular aspects. Endocrine. 2013; 43(2): 274–284.
  16. Lin SH, Huang CL. Mechanism of thyrotoxic periodic paralysis. J Am Soc Nephrol. 2012; 23(6): 985–988.
  17. Paninka RM, Carlos-Lima E, Lindsey SC, et al. Down-regulation of Kir2.6 channel by c-termini mutation D252N and its association with the susceptibility to Thyrotoxic Periodic Paralysis. Neuroscience. 2017; 346: 197–202.
  18. Chu PY, Cheng CJ, Tseng MH, et al. Genetic variant rs623011 (17q24.3) associates with non-familial thyrotoxic and sporadic hypokalemic paralysis. Clin Chim Acta. 2012; 414: 105–108.
  19. Paninka RM, Mazzotti DR, Kizys MML, et al. Whole genome and exome sequencing realignment supports the assignment of KCNJ12, KCNJ17, and KCNJ18 paralogous genes in thyrotoxic periodic paralysis locus: functional characterization of two polymorphic Kir2.6 isoforms. Mol Genet Genomics. 2016; 291(4): 1535–1544.
  20. Ryan DP, da Silva MR, Soong TW, et al. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell. 2010; 140(1): 88–98.
  21. Venance SL, Cannon SC, Fialho D, et al. CINCH investigators. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain. 2006; 129(Pt 1): 8–17.
  22. Lin SH, Chu P, Cheng CJ, et al. Early diagnosis of thyrotoxic periodic paralysis: spot urine calcium to phosphate ratio. Crit Care Med. 2006; 34(12): 2984–2989.
  23. Tu ML, Fang YW, Leu JG, et al. An atypical presentation of high potassium renal secretion rate in a patient with thyrotoxic periodic paralysis: a case report. BMC Nephrol. 2018; 19(1): 160.
  24. Tella SH, Kommalapati A. Thyrotoxic Periodic Paralysis: An Underdiagnosed and Under-recognized Condition. Cureus. 2015; 7(10): e342.
  25. Yu TS, Tseng CF, Chuang YY, et al. Potassium chloride supplementation alone may not improve hypokalemia in thyrotoxic hypokalemic periodic paralysis. J Emerg Med. 2007; 32(3): 263–265.
  26. Rhee EP, Scott JA, Dighe AS. Case records of the Massachusetts General Hospital. Case 4-2012. A 37-year-old man with muscle pain, weakness, and weight loss. N Engl J Med. 2012; 366(6): 553–560.
  27. Boddu NJ, Badireddi S, Straub KD, et al. Acute thyrotoxic bulbar myopathy with encephalopathic behaviour: an uncommon complication of hyperthyroidism. Case Rep Endocrinol. 2013; 2013: 369807.
  28. Chapman EM, Maloof F. Bizarre clinical manifestations of hyperthyroidism. N Engl J Med. 1956; 254(1): 1–5.
  29. Haiyang Z, Xinhuan L, Shaozhen Q, et al. Clinicial analysis of 69 patients with acute hyperthyroid myopathy and its treatment. Chinjendmet. 2012.
  30. Musso C, Liakopoulos V, De Miguel R, et al. Transtubular potassium concentration gradient: comparison between healthy old people and chronic renal failure patients. Int Urol Nephrol. 2006; 38(2): 387–390.
  31. Ethier JH, Kamel KS, Magner PO, et al. Urine electrolytes and osmolality: when and how to use them. Am J Nephrol. 1990; 10(2): 89–102.
  32. Song RH, Yao QM, Wang B, et al. Thyroid disorders in patients with myasthenia gravis: A systematic review and meta-analysis. Autoimmun Rev. 2019; 18(10): 102368.
  33. Sekiguchi Y, Hara Y, Takahashi M, et al. Reverse 'see-saw' relationship between Graves' disease and myasthenia gravis; clinical and immunological studies. J Med Dent Sci. 2005; 52(1): 43–50.
  34. Fan L, Ma S, Yang Y, et al. Clinical differences of early and late-onset myasthenia gravis in 985 patients. Neurol Res. 2019; 41(1): 45–51.
  35. Jiang R, Hoehn KB, Lee CS, et al. Thymus-derived B cell clones persist in the circulation after thymectomy in myasthenia gravis. Proc Natl Acad Sci U S A. 2020; 117(48): 30649–30660.
  36. Nakamura T, Murakami M, Horiguchi H, et al. A case of thymic enlargement in hyperthyroidism in a young woman. Thyroid. 2004; 14(4): 307–310.
  37. Wortsman J, McConnachie P, Baker JR, et al. Immunoglobulins that cause thymocyte proliferation from a patient with Graves' disease and an enlarged thymus. Am J Med. 1988; 85(1): 117–121.
  38. Datt V, Tempe DK, Singh B, et al. Anesthetic management of patient with myasthenia gravis and uncontrolled hyperthyroidism for thymectomy. Ann Card Anaesth. 2010; 13(1): 49–52.
  39. Trabelsi L, Charfi N, Triki Ch, et al. [Myasthenia gravis and hyperthyroidism: two cases]. Ann Endocrinol (Paris). 2006; 67(3): 265–269.
  40. ENGEL AG. Thyroid function and myasthenia gravis. Arch Neurol. 1961; 4: 663–674.
  41. Perros P, Crombie AL, Kendall-Taylor P. Natural history of thyroid associated ophthalmopathy. Clin Endocrinol (Oxf). 1995; 42(1): 45–50.
  42. Claytor B, Li Y. Challenges in diagnosing coexisting ocular myasthenia gravis and thyroid eye disease. Muscle Nerve. 2021; 63(5): 631–639.