open access

Vol 70, No 6 (2019)
Review paper
Submitted: 2019-04-07
Accepted: 2019-07-29
Published online: 2019-12-20
Get Citation

The role of adipokines in the pathogenesis and course of selected respiratory diseases

Artur Chwalba1, Edyta Machura1, Katarzyna Ziora1, Dariusz Ziora1
·
Pubmed: 31891413
·
Endokrynol Pol 2019;70(6):504-510.
Affiliations
  1. Pulmonology Branch Unit, Pulmonary Rehabilitation Independent Public Clinical Hospital No. 1, Silesian Medical University in Katowice, Zabrze, Poland

open access

Vol 70, No 6 (2019)
Review Article
Submitted: 2019-04-07
Accepted: 2019-07-29
Published online: 2019-12-20

Abstract

Adipose tissue is also a secretory organ producing active substances called adipokines. Some of them (apelin, resistin, adiponectin, leptin, chemerin, or visfatin) may play a role in the pathogenesis and course of respiratory diseases, e.g. COPD, asthma, pulmonary hypertension, or lung cancer. There are limited and conflicting data on the role of adipokines in asthma. It has been confirmed, however, that visfatin and leptin can be markers of inflammation in COPD. Elevated concentrations of leptin and resistin play a pro-inflammatory role in the development of cancer cachexia. The role of adipokines has also been demonstrated in pulmonary hypertension, and the apelinadiponectin axis disruption may exacerbate pulmonary hypertension.

Abstract

Adipose tissue is also a secretory organ producing active substances called adipokines. Some of them (apelin, resistin, adiponectin, leptin, chemerin, or visfatin) may play a role in the pathogenesis and course of respiratory diseases, e.g. COPD, asthma, pulmonary hypertension, or lung cancer. There are limited and conflicting data on the role of adipokines in asthma. It has been confirmed, however, that visfatin and leptin can be markers of inflammation in COPD. Elevated concentrations of leptin and resistin play a pro-inflammatory role in the development of cancer cachexia. The role of adipokines has also been demonstrated in pulmonary hypertension, and the apelinadiponectin axis disruption may exacerbate pulmonary hypertension.

Get Citation

Keywords

adipokines; apelin; resistin; adiponectin; leptin; chemerin; visfatin; nesfatin; COPD; pulmonary hypertension; non-small cell lung cancer

About this article
Title

The role of adipokines in the pathogenesis and course of selected respiratory diseases

Journal

Endokrynologia Polska

Issue

Vol 70, No 6 (2019)

Article type

Review paper

Pages

504-510

Published online

2019-12-20

Page views

2734

Article views/downloads

1891

DOI

10.5603/EP.a2019.0051

Pubmed

31891413

Bibliographic record

Endokrynol Pol 2019;70(6):504-510.

Keywords

adipokines
apelin
resistin
adiponectin
leptin
chemerin
visfatin
nesfatin
COPD
pulmonary hypertension
non-small cell lung cancer

Authors

Artur Chwalba
Edyta Machura
Katarzyna Ziora
Dariusz Ziora

References (47)
  1. Skowrońska B, Fichna M, Fichna P. Rola tkanki tłuszczowej w układzie dokrewnym. Endokrynologia, Otyłość i Zaburzenia Przemiany Materii. 2005; 1(3): 21–29.
  2. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; 372(6505): 425–432.
  3. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004; 92(3): 347–355.
  4. Cancello R, Tounian A, Poitou Ch, et al. Adiposity signals, genetic and body weight regulation in humans. Diabetes Metab. 2004; 30(3): 215–227.
  5. Sirbu AE, Buburuzan L, Kevorkian S, et al. Adiponectin expression in visceral adiposity is an important determinant of insulin resistance in morbid obesity. Endokrynol Pol. 2018; 69(3): 252–258.
  6. Baranowska-Bik A, Kalisz M, Martyńska L, et al. Plasma adiponectin array in women with Alzheimer's disease. Endokrynol Pol. 2018; 69(5): 550–559.
  7. Machura E, Szczepańska M, Świętochowska E, et al. Evaluation of adipokines in children with cystic fibrosis. Endokrynol Pol. 2018; 69(2): 128–134.
  8. Korek E, Krauss H. Nowe adipokiny o potencjalnym znaczeniu w patogenezie otyłości i zaburzeń metabolicznych. Postepy Hig Med Dosw (online). 2015; 69: 799–810.
  9. Baranowska-Bik A, Baranowska B, Martyńska L, et al. Adipokine profile in patients with anorexia nervosa. Endokrynol Pol. 2017; 68(4): 422–429.
  10. Ziora D, Sitek P, Machura E, et al. [Bronchial asthma in obesity — a distinct phenotype of asthma?]. Pneumonol Alergol Pol. 2012; 80(5): 454–462.
  11. Machura E, Ziora K, Ziora D, et al. Serum apelin-12 level is elevated in schoolchildren with atopic asthma. Respir Med. 2013; 107(2): 196–201.
  12. Toru Ü, Ayada C, Genç O, et al. Visfatin and ghrelin: can they be forthcoming biomarkers or new drug targets for asthma? Int J Clin Exp Med. 2015; 8(4): 6257–6261.
  13. Ballantyne D, Scott H, MacDonald-Wicks L, et al. Resistin is a predictor of asthma risk and resistin:adiponectin ratio is a negative predictor of lung function in asthma. Clin Exp Allergy. 2016; 46(8): 1056–1065.
  14. Larochelle J, Freiler J, Dice J, et al. Plasma resistin levels in asthmatics as a marker of disease state. J Asthma. 2007; 44(7): 509–513.
  15. Ziora D, Machura E, Ziora KT, et al. Serum resistin levels are elevated in schoolchildren with atopic asthma. Neuro Endocrinol Lett. 2013; 34(3): 212–216.
  16. Wojciechowska C, Jacheć W, Romuk E, et al. The effect of BMI, serum leptin, and adiponectin levels on prognosis in patients with non-ischaemic dilated cardiomyopathy. Endokrynol Pol. 2017; 68(1): 26–34.
  17. Muc M, Todo-Bom A, Mota-Pinto A, et al. Leptin and resistin in overweight patients with and without asthma. Allergol Immunopathol (Madr). 2014; 42(5): 415–421.
  18. Sood A, Shore SA. Adiponectin, Leptin, and Resistin in Asthma: Basic Mechanisms through Population Studies. J Allergy (Cairo). 2013; 2013: 785835.
  19. Nagel G, Koenig W, Rapp K, et al. Associations of adipokines with asthma, rhinoconjunctivitis, and eczema in German schoolchildren. Pediatr Allergy Immunol. 2009; 20(1): 81–88.
  20. Jartti T, Saarikoski L, Jartti L, et al. Obesity, adipokines and asthma. Allergy. 2009; 64(5): 770–777.
  21. Sood A, Ford ES, Camargo CA. Association between leptin and asthma in adults. Thorax. 2006; 61(4): 300–305.
  22. Sutherland TJT, Sears MR, McLachlan CR, et al. Leptin, adiponectin, and asthma: findings from a population-based cohort study. Ann Allergy Asthma Immunol. 2009; 103(2): 101–107.
  23. Jang AS, Kim TH, Park JS, et al. Association of serum leptin and adiponectin with obesity in asthmatics. J Asthma. 2009; 46(1): 59–63.
  24. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006; 17(1): 4–12.
  25. Liu X, Ji Y, Chen J, et al. Circulating visfatin in chronic obstructive pulmonary disease. Nutrition. 2009; 25(4): 373–378.
  26. Leivo-Korpela S, Lehtimäki L, Hämälainen M, et al. Adipokines NUCB2/nesfatin-1 and visfatin as novel inflammatory factors in chronic obstructive pulmonary disease. Mediators Inflamm. 2014; 2014: 232167.
  27. Kwak S, Kim YD, Na HG, et al. Resistin upregulates MUC5AC/B mucin gene expression in human airway epithelial cells. Biochem Biophys Res Commun. 2018; 499(3): 655–661.
  28. Mohan A, Arora S, Uniyal A, et al. Evaluation of plasma leptin, tumor necrosis factor-α, and prealbumin as prognostic biomarkers during clinical recovery from acute exacerbations of chronic obstructive pulmonary disease. Lung India. 2017; 34(1): 3–8.
  29. Calikoglu M, Sahin G, Unlu A, et al. Leptin and TNF-alpha levels in patients with chronic obstructive pulmonary disease and their relationship to nutritional parameters. Respiration. 2004; 71(1): 45–50.
  30. Zhou L, Yuan C, Zhang J, et al. Circulating leptin concentrations in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respiration. 2013; 86(6): 512–522.
  31. Yang YM, Sun TY, Liu XM. The role of serum leptin and tumor necrosis factor-alpha in malnutrition of male chronic obstructive pulmonary disease patients. Chin Med J (Engl). 2006; 119(8): 628–633.
  32. Jaswal S, Saini V, Kaur J, et al. Association of Adiponectin with Lung Function Impairment and Disease Severity in Chronic Obstructive Pulmonary Disease. Int J Appl Basic Med Res. 2018; 8(1): 14–18.
  33. Xie J, Yang XY, Shi JD, et al. A new inflammation marker of chronic obstructive pulmonary disease-adiponectin. World J Emerg Med. 2010; 1(3): 190–195.
  34. Uzum AK, Aydin MM, Tutuncu Y, et al. Serum ghrelin and adiponectin levels are increased but serum leptin level is unchanged in low weight Chronic Obstructive Pulmonary Disease patients. Eur J Intern Med. 2014; 25(4): 364–369.
  35. Suzuki M, Makita H, Östling J, et al. Hokkaido COPD Cohort Study, Danish Lung Cancer Screening Trial Investigators. Lower leptin/adiponectin ratio and risk of rapid lung function decline in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014; 11(10): 1511–1519.
  36. Siemińska L, Borowski A, Marek B, et al. Serum concentrations of adipokines in men with prostate cancer and benign prostate hyperplasia. Endokrynol Pol. 2018; 69(2): 120–127.
  37. Demiray G, Değirmencioğlu S, Uğurlu E, et al. Effects of Serum Leptin and Resistin Levels on Cancer Cachexia in Patients With Advanced-Stage Non-Small Cell Lung Cancer. Clin Med Insights Oncol. 2017; 11: 1179554917690144.
  38. Ntikoudi E, Kiagia M, Boura P, et al. Hormones of adipose tissue and their biologic role in lung cancer. Cancer Treat Rev. 2014; 40(1): 22–30.
  39. Cui E, Guo H, Shen Mo, et al. Adiponectin inhibits migration and invasion by reversing epithelial‑mesenchymal transition in non‑small cell lung carcinoma. Oncol Rep. 2018; 40(3): 1330–1338.
  40. Umekawa K, Kimura T, Kudoh S, et al. Reaction of plasma adiponectin level in non-small cell lung cancer patients treated with EGFR-TKIs. Osaka City Med J. 2013; 59(1): 53–60.
  41. Vansaun MN. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res. 2013; 19(8): 1926–1932.
  42. Andersen CU, Hilberg O, Mellemkjær S, et al. Apelin and pulmonary hypertension. Pulm Circ. 2011; 1(3): 334–346.
  43. Yang P, Read C, Kuc RE, et al. Elabela/Toddler Is an Endogenous Agonist of the Apelin APJ Receptor in the Adult Cardiovascular System, and Exogenous Administration of the Peptide Compensates for the Downregulation of Its Expression in Pulmonary Arterial Hypertension. Circulation. 2017; 135(12): 1160–1173.
  44. Chandra SM, Razavi H, Kim J, et al. Disruption of the apelin-APJ system worsens hypoxia-induced pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2011; 31(4): 814–820.
  45. Stofkova A. Resistin and visfatin: regulators of insulin sensitivity, inflammation and immunity. Endocr Regul. 2010; 44(1): 25–36.
  46. Hu W, Liu CW, Su J, et al. Elevated plasma visfatin concentrations in patients with community-acquired pneumonia. Peptides. 2013; 43: 8–12.
  47. Ochman M, Maruszewski M, Wojarski J, et al. Serum Levels of Visfatin, Omentin and Irisin in Patients with End-Stage Lung Disease Before and After Lung Transplantation. Ann Transplant. 2017; 22: 761–768.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl