open access

Vol 69, No 5 (2018)
Review paper
Submitted: 2018-05-04
Accepted: 2018-05-11
Published online: 2018-08-03
Get Citation

Chromogranin A and its role in the pathogenesis of diabetes mellitus

Zoltan Herold1, Marton Doleschall2, Annamaria Kovesdi1, Attila Patocs34, Aniko Somogyi1
·
Pubmed: 30074235
·
Endokrynol Pol 2018;69(5):598-610.
Affiliations
  1. Semmelweis University, 2nd Department of Internal Medicine, Szentkiralyi u. 46., H-1088 Budapest, Hungary
  2. MTA-SE Molecular Medicine Research Group, Szentkiralyi u. 46., H-1088 Budapest, Hungary
  3. Semmelweis University, Department of Laboratory Medicine, Szentkiralyi u. 46., H-1088 Budapest, Hungary
  4. MTA-SE “Momentum” Hereditary Endocrine Tumours Research Group, Szentkiralyi u. 46., H-1088 Budapest, Hungary

open access

Vol 69, No 5 (2018)
Review Article
Submitted: 2018-05-04
Accepted: 2018-05-11
Published online: 2018-08-03

Abstract

Chromogranin A is a member of the granin glycoprotein family that is expressed by the endocrine and neuroendocrine cells of different organs. Intracellularly, chromogranin A contributes to the regulation of secretion and gives several cleavage products after secretion. Some of its cleavage products modify the hormone functions in autocrine and paracrine ways, while the functions of others have not been fully understood yet. Serum chromogranin A level is most prominently used in neuroendocrine tumour diagnostics. In addition, recent studies have suggested that chromogranin A and some of its cleavage products (pancreastatin and WE-14) also play important roles in the pathogenesis of the various forms of diabetes mellitus, but their exact mechanisms still need to be clarified. Higher chromogranin A, pancreastatin, and WE-14 levels have been reported in type 1, type 2, and gestational diabetic patients compared to healthy controls. A notable connection has been inferred through the observation that type 1 diabetes mellitus is not at all or rarely developed in chromogranin A gene-knockout, non-obese diabetic model mice compared to non-knockout, non-obese diabetic mice. Pancreastatin inhibits insulin release in various cell and animal models, and WE-14 serves as an autoantigen for both CD4+ and CD8+ beta cell-destructive diabetogenic T-cell clones in type 1 diabetes. Chromogranin A contributes to the pathogenesis of diabetes mellitus according to the available literature. The current findings facilitate further investigation to unravel the deeper relationships between this glycoprotein and diabetes.

Abstract

Chromogranin A is a member of the granin glycoprotein family that is expressed by the endocrine and neuroendocrine cells of different organs. Intracellularly, chromogranin A contributes to the regulation of secretion and gives several cleavage products after secretion. Some of its cleavage products modify the hormone functions in autocrine and paracrine ways, while the functions of others have not been fully understood yet. Serum chromogranin A level is most prominently used in neuroendocrine tumour diagnostics. In addition, recent studies have suggested that chromogranin A and some of its cleavage products (pancreastatin and WE-14) also play important roles in the pathogenesis of the various forms of diabetes mellitus, but their exact mechanisms still need to be clarified. Higher chromogranin A, pancreastatin, and WE-14 levels have been reported in type 1, type 2, and gestational diabetic patients compared to healthy controls. A notable connection has been inferred through the observation that type 1 diabetes mellitus is not at all or rarely developed in chromogranin A gene-knockout, non-obese diabetic model mice compared to non-knockout, non-obese diabetic mice. Pancreastatin inhibits insulin release in various cell and animal models, and WE-14 serves as an autoantigen for both CD4+ and CD8+ beta cell-destructive diabetogenic T-cell clones in type 1 diabetes. Chromogranin A contributes to the pathogenesis of diabetes mellitus according to the available literature. The current findings facilitate further investigation to unravel the deeper relationships between this glycoprotein and diabetes.

Get Citation

Keywords

chromogranin A, diabetes mellitus, diabetes mellitus type 1, diabetes mellitus type 2, gestational diabetes, mice inbred NOD, pancreastatin, WE-14

About this article
Title

Chromogranin A and its role in the pathogenesis of diabetes mellitus

Journal

Endokrynologia Polska

Issue

Vol 69, No 5 (2018)

Article type

Review paper

Pages

598-610

Published online

2018-08-03

Page views

7632

Article views/downloads

5948

DOI

10.5603/EP.a2018.0052

Pubmed

30074235

Bibliographic record

Endokrynol Pol 2018;69(5):598-610.

Keywords

chromogranin A
diabetes mellitus
diabetes mellitus type 1
diabetes mellitus type 2
gestational diabetes
mice inbred NOD
pancreastatin
WE-14

Authors

Zoltan Herold
Marton Doleschall
Annamaria Kovesdi
Attila Patocs
Aniko Somogyi

References (175)
  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014; 37 Suppl 1: S81–S90.
  2. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40–50.
  3. Al-Aissa Z, Hadarits O, Rosta K, et al. [A brief of gestational diabetes mellitus, risk factors and current criteria of diagnosis]. Orv Hetil. 2017; 158(8): 283–290.
  4. Paschou SA, Papadopoulou-Marketou N, Chrousos GP, et al. On type 1 diabetes mellitus pathogenesis. Endocr Connect. 2018; 7(1): R38–R46.
  5. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005; 365(9467): 1333–1346.
  6. Xie F, Chan JCn, Ma RCw. Precision medicine in diabetes prevention, classification and management. J Diabetes Investig. 2018 [Epub ahead of print].
  7. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon). 2014; 42(12): 698–702.
  8. Ramachandran A, Snehalatha C, Nanditha A. Classification and Diagnosis of Diabetes. In: Holt RIG, Cockram CS, Flyvbjerg A. ed. Textbook of Diabetes. JohnWiley & Sons Ltd, Chichester 2017: 23–28.
  9. Alshiekh S, Larsson H, Ivarsson SA, et al. Autoimmune Type 1 Diabetes. Textbook of Diabetes. 2016: 143–153.
  10. Lukács K, Pánczél P, Hosszúfalusi N. [Genetics of type 1 diabetes: present and future]. Orv Hetil. 2017; 158(44): 1731–1740.
  11. Stadinski BD, Delong T, Reisdorph N, et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol. 2010; 11(3): 225–231.
  12. Gillespie KM. Type 1 diabetes: pathogenesis and prevention. CMAJ. 2006; 175(2): 165–170.
  13. Kis J, Engelmann P, Heyam J, et al. [The possibility of immunological prevention in type 1 diabetes mellitus] [Hungarian]. Lege Artis Medicinæ. 2006; 16: 771–773.
  14. Tsai S, Shameli A, Santamaria P. CD8+ T cells in type 1 diabetes. Adv Immunol. 2008; 100: 79–124.
  15. Prasad RB, Groop L. Genetic Architecture of Type 2 Diabetes. In: Holt RIG, Cockram CS, Flyvbjerg A. ed. Textbook of Diabetes. JohnWiley & Sons Ltd, Chichester 2017: 187–204.
  16. Reaven GM, Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988; 37(12): 1595–1607.
  17. Ricci G, Pirillo I, Tomassoni D, et al. Metabolic syndrome, hypertension, and nervous system injury: Epidemiological correlates. Clin Exp Hypertens. 2017; 39(1): 8–16.
  18. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012; 27(4): 269–273.
  19. Federation ID. IDF Diabetes Atlas, 8th ed. Brussels, Belgium, 2017. International Diabetes Federation. http://www.diabetesatlas.org (November 14, 2017).
  20. Gestational Diabetes Mellitus. Diabetes Care. 2003; 26(Supplement 1): S103–S105.
  21. Konecki DS, Benedum UM, Gerdes HH, et al. The primary structure of human chromogranin A and pancreastatin. J Biol Chem. 1987 ; 262(35): 17026–17030.
  22. Broedbaek K, Hilsted L. Chromogranin A as biomarker in diabetes. Biomark Med. 2016; 10(11): 1181–1189.
  23. Angeletti RH, Hickey WF. A neuroendocrine marker in tissues of the immune system. Science. 1985; 230(4721): 89–90.
  24. Nolan JA, Trojanowski JQ, Hogue-Angeletti R. Neurons and neuroendocrine cells contain chromogranin: detection of the molecule in normal bovine tissues by immunochemical and immunohistochemical methods. J Histochem Cytochem. 1985; 33(8): 791–798.
  25. Louthan O. Chromogranin a in physiology and oncology. Folia Biol (Praha). 2011; 57(5): 173–181.
  26. Nobels FR, Kwekkeboom DJ, Bouillon R, et al. Chromogranin A: its clinical value as marker of neuroendocrine tumours. Eur J Clin Invest. 1998; 28(6): 431–440.
  27. Taupenot L, Harper KL, O'Connor DT. The chromogranin-secretogranin family. N Engl J Med. 2003; 348(12): 1134–1149.
  28. Vinik AI, Silva MP, Woltering EA, et al. Biochemical testing for neuroendocrine tumors. Pancreas. 2009; 38(8): 876–889.
  29. Wassberg E, Stridsberg M, Christofferson R. Plasma levels of chromogranin A are directly proportional to tumour burden in neuroblastoma. J Endocrinol. 1996; 151(2): 225–230.
  30. Eriksson B, Öberg K, Stridsberg M. Tumor Markers in Neuroendocrine Tumors. Digestion. 2000; 62(1): 33–38.
  31. Telega A, Kos-Kudła B, Foltyn W, et al. Selected neuroendocrine tumour markers, growth factors and their receptors in typical and atypical bronchopulmonary carcinoids. Endokrynol Pol. 2012; 63(6): 477–482.
  32. Woliński K, Kaznowski J, Klimowicz A, et al. Diagnostic value of selected biochemical markers in the detection of recurrence of medullary thyroid cancer - comparison of calcitonin, procalcitonin, chromogranin A, and carcinoembryonic antigen. Endokrynol Pol. 2017; 68(4): 434–437.
  33. Marotta V, Zatelli MC, Sciammarella C, et al. Chromogranin A as circulating marker for diagnosis and management of neuroendocrine neoplasms: more flaws than fame. Endocr Relat Cancer. 2018; 25(1): R11–R29.
  34. Guillemot J, Guérin M, Thouënnon E, et al. Characterization and plasma measurement of the WE-14 peptide in patients with pheochromocytoma. PLoS One. 2014; 9(2): e88698.
  35. Blaschko H, Comline RS, Schneider FH, et al. Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature. 1967; 215(5096): 58–59.
  36. Banks P, Helle K. The release of protein from the stimulated adrenal medulla. Biochem J. 1965; 97(3): 40C–41C.
  37. Gut P, Czarnywojtek A, Fischbach J, et al. Chromogranin A - unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch Med Sci. 2016; 12(1): 1–9.
  38. Tatemoto K, Efendić S, Mutt V, et al. Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature. 1986; 324(6096): 476–478.
  39. Schmidt WE, Creutzfeldt W. Pancreastatin — a novel regulatory peptide? Acta Oncol. 1991; 30(4): 441–449.
  40. Drees B, Hamilton J. Pancreastatin and bovine parathyroid cell secretion. Bone Miner. 1992; 17(3): 335–346.
  41. Curry WJ, Shaw C, Johnston CF, et al. Isolation and primary structure of a novel chromogranin A-derived peptide, WE-14, from a human midgut carcinoid tumour. FEBS Lett. 1992; 301(3): 319–321.
  42. Gleeson CM, Curry WJ, Johnston CF, et al. Occurrence of WE-14 and chromogranin A-derived peptides in tissues of the human and bovine gastro-entero-pancreatic system and in human neuroendocrine neoplasia. J Endocrinol. 1996; 151(3): 409–420.
  43. Barkatullah SC, Pogue KM, Depreitere J, et al. Immunohistochemical localization of WE-14 in the developing porcine sympathoadrenal cell lineage. Histochem Cell Biol. 2001; 116(3): 255–262.
  44. Mahata SK, O'Connor DT, Mahata M, et al. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997; 100(6): 1623–1633.
  45. Mahata SK, Mahapatra NR, Mahata M, et al. Catecholamine secretory vesicle stimulus-transcription coupling in vivo. Demonstration by a novel transgenic promoter/photoprotein reporter and inhibition of secretion and transcription by the chromogranin A fragment catestatin. J Biol Chem. 2003; 278(34): 32058–32067.
  46. Modi WS, Levine MA, Seuanez HN, et al. The human chromogranin A gene: chromosome assignment and RFLP analysis. Am J Hum Genet. 1989; 45(5): 814–818.
  47. Mouland AJ, Bevan S, White JH, et al. Human chromogranin A gene. Molecular cloning, structural analysis, and neuroendocrine cell-specific expression. J Biol Chem. 1994; 269(9): 6918–6926.
  48. Murray SS, Deaven LL, Burton DW, et al. The gene for human chromogranin A (CgA) is located on chromosome 14. Biochem Biophys Res Commun. 1987; 142(1): 141–146.
  49. Simon JP, Aunis D. Biochemistry of the chromogranin A protein family. Biochem J. 1989; 262(1): 1–13.
  50. Reiffen FU, Gratzl M. Chromogranins, widespread in endocrine and nervous tissue, bind Ca2+. FEBS Lett. 1986; 195(1-2): 327–330.
  51. Videen JS, Mezger MS, Chang YM, et al. Calcium and catecholamine interactions with adrenal chromogranins. Comparison of driving forces in binding and aggregation. J Biol Chem. 1992; 267(5): 3066–3073.
  52. Helle K, Metz-Boutigue M, Aunis D. Chromogranin A as a Calcium-Binding Precursor for a Multitude of Regulatory Peptides for the Immune, Endocrine and Metabolic Systems. Current Medicinal Chemistry-Immunology, Endocrine & Metabolic Agents. 2001; 1(2): 119–140.
  53. Wu HJ, Rozansky DJ, Parmer RJ, et al. Structure and function of the chromogranin A gene. Clues to evolution and tissue-specific expression. J Biol Chem. 1991; 266(20): 13130–13134.
  54. Hendy GN, Bevan S, Mattei MG, et al. Chromogranin A. Clin Invest Med. 1995; 18(1): 47–65.
  55. Benedum UM, Baeuerle PA, Konecki DS, et al. The primary structure of bovine chromogranin A: a representative of a class of acidic secretory proteins common to a variety of peptidergic cells. EMBO J. 1986; 5(7): 1495–1502.
  56. Parmer RJ, Koop AH, Handa MT, et al. Molecular cloning of chromogranin A from rat pheochromocytoma cells. Hypertension. 1989; 14(4): 435–444.
  57. Montero-Hadjadje M, Vaingankar S, Elias S, et al. Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf). 2008; 192(2): 309–324.
  58. Winkler H, Fischer-Colbrie R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience. 1992; 49(3): 497–528.
  59. Facer P, Bishop AE, Cole GA, et al. Developmental profile of chromogranin, hormonal peptides, and 5-hydroxytryptamine in gastrointestinal endocrine cells. Gastroenterology. 1989; 97(1): 48–57.
  60. Helman LJ, Ahn TG, Levine MA, et al. Molecular cloning and primary structure of human chromogranin A (secretory protein I) cDNA. J Biol Chem. 1988; 263(23): 11559–11563.
  61. Molenaar WM, Lee VM, Trojanowski JQ. Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins. Exp Neurol. 1990; 108(1): 1–9.
  62. Banks P, Helle KB, Mayor D. Evidence for the presence of a chromogranin-like protein in bovine splenic nerve granules. Mol Pharmacol. 1969; 5(2): 210–212.
  63. Buffa R, Gini A, Pelagi M, et al. Immunoreactivity of hormonally-characterized human endocrine cells against three novel anti-human chromogranin B(B11 and B13) and chromogranin A (A11) monoclonal antibodies. Arch Histol Cytol. 1989; 52 Suppl: 99–105.
  64. Lauweryns JM, van Ranst L, Lloyd RV, et al. Chromogranin in bronchopulmonary neuroendocrine cells. Immunocytochemical detection in human, monkey, and pig respiratory mucosa. J Histochem Cytochem. 1987; 35(1): 113–118.
  65. Helle KB, Corti A, Metz-Boutigue MH, et al. The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci. 2007; 64(22): 2863–2886.
  66. Saruta J, Tsukinoki K, Sasaguri K, et al. Expression and localization of chromogranin A gene and protein in human submandibular gland. Cells Tissues Organs. 2005; 180(4): 237–244.
  67. Cramer T, Jüttner S, Plath T, et al. Gastrin transactivates the chromogranin A gene through MEK-1/ERK- and PKC-dependent phosphorylation of Sp1 and CREB. Cell Signal. 2008; 20(1): 60–72.
  68. Mahapatra NR, Mahata M, O'Connor DT, et al. Secretin activation of chromogranin A gene transcription. Identification of the signaling pathways in cis and in trans. J Biol Chem. 2003; 278(22): 19986–19994.
  69. Anouar Y, Benie T, De Monti M, et al. Estradiol negatively regulates secretogranin II and chromogranin A messenger ribonucleic acid levels in the female rat pituitary but not in the adrenal. Endocrinology. 1991; 129(5): 2393–2399.
  70. Anouar Y, Duval J. Direct estradiol down-regulation of secretogranin II and chromogranin A mRNA levels in rat pituitary cells. Mol Cell Endocrinol. 1992; 88(1-3): 97–104.
  71. Takiyyuddin MA, Neumann HP, Cervenka JH, et al. Ultradian variations of chromogranin A in humans. Am J Physiol. 1991; 261(4 Pt 2): R939–R944.
  72. Galindo E, Bader MF, Aunis D. Regulation of chromogranin a and chromogranin B (secretogranin I) synthesis in bovine cultured chromaffin cells. J Neuroendocrinol. 1991; 3(6): 669–677.
  73. Simon JP, Bader MF, Aunis D. Effect of secretagogues on chromogranin A synthesis in bovine cultured chromaffin cells. Possible regulation by protein kinase C. Biochem J. 1989; 260(3): 915–922.
  74. Kim T, Tao-Cheng JH, Eiden LE, et al. Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis. Cell. 2001; 106(4): 499–509.
  75. Gorr SU, Dean WL, Radley TL, et al. Calcium-binding and aggregation properties of parathyroid secretory protein-I (chromogranin A). Bone Miner. 1988; 4(1): 17–25.
  76. Yoo SH, Lewis MS. Effects of pH and Ca2+ on monomer-dimer and monomer-tetramer equilibria of chromogranin A. J Biol Chem. 1992; 267(16): 11236–11241.
  77. Settleman J, Nolan J, Angeletti RH. Chromogranin, an integral membrane protein. J Biol Chem. 1985; 260(3): 1641–1644.
  78. Westermann R, Stögbauer F, Unsicker K, et al. Calcium-dependence of chromogranin A-catecholamine interaction. FEBS Lett. 1988; 239(2): 203–206.
  79. Gorr SU, Shioi J, Cohn DV. Interaction of calcium with porcine adrenal chromogranin A (secretory protein-I) and chromogranin B (secretogranin I). Am J Physiol. 1989; 257(2 Pt 1): E247–E254.
  80. Seidah NG, Hendy GN, Hamelin J, et al. Chromogranin A can act as a reversible processing enzyme inhibitor. Evidence from the inhibition of the IRCM-serine protease 1 cleavage of pro-enkephalin and ACTH at pairs of basic amino acids. FEBS Lett. 1987; 211(2): 144–150.
  81. Huttner WB, Natori S. Regulated secretion. Helper proteins for neuroendocrine secretion. Curr Biol. 1995; 5(3): 242–245.
  82. Kiang WL, Krusius T, Finne J, et al. Glycoproteins and proteoglycans of the chromaffin granule matrix. J Biol Chem. 1982; 257(4): 1651–1659.
  83. Bhargava G, Russell J, Sherwood LM. Phosphorylation of parathyroid secretory protein. Proc Natl Acad Sci U S A. 1983; 80(3): 878–881.
  84. Gorr SU, Hamilton JW, Cohn DV, et al. Secretion of sulfated and nonsulfated forms of parathyroid chromogranin A (secretory protein-I). J Biol Chem. 1990; 265(6): 3012–3016.
  85. Nguyen MH, Harbour D, Gagnon C. Secretory proteins from adrenal medullary cells are carboxyl-methylated in vivo and released under their methylated form by acetylcholine. J Neurochem. 1987; 49(1): 38–44.
  86. Sigafoos J, Chestnut WG, Merrill BM, et al. Novel peptides from adrenomedullary chromaffin vesicles. J Anat. 1993; 183 ( Pt 2): 253–264.
  87. Eskeland NL, Zhou A, Dinh TQ, et al. Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. J Clin Invest. 1996; 98(1): 148–156.
  88. Biswas N, Rodriguez-Flores JL, Courel M, et al. Cathepsin L colocalizes with chromogranin a in chromaffin vesicles to generate active peptides. Endocrinology. 2009; 150(8): 3547–3557.
  89. Hook V, Yasothornsrikul S, Greenbaum D, et al. Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones. Biol Chem. 2004; 385(6): 473–480.
  90. Benedum UM, Lamouroux A, Konecki DS, et al. The primary structure of human secretogranin I (chromogranin B): comparison with chromogranin A reveals homologous terminal domains and a large intervening variable region. EMBO J. 1987; 6(5): 1203–1211.
  91. Thiele C, Huttner WB. The disulfide-bonded loop of chromogranins, which is essential for sorting to secretory granules, mediates homodimerization. J Biol Chem. 1998; 273(2): 1223–1231.
  92. Rouillé Y, Duguay SJ, Lund K, et al. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol. 1995; 16(4): 322–361.
  93. Prigge ST, Mains RE, Eipper BA, et al. New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell Mol Life Sci. 2000; 57(8-9): 1236–1259.
  94. Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, et al. Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem. 1993; 217(1): 247–257.
  95. Jiang Q, Taupenot L, Mahata SK, et al. Proteolytic cleavage of chromogranin A (CgA) by plasmin. Selective liberation of a specific bioactive CgA fragment that regulates catecholamine release. J Biol Chem. 2001; 276(27): 25022–25029.
  96. Parmer RJ, Mahata M, Gong Y, et al. Processing of chromogranin A by plasmin provides a novel mechanism for regulating catecholamine secretion. J Clin Invest. 2000; 106(7): 907–915.
  97. Crippa L, Bianco M, Colombo B, et al. A new chromogranin A-dependent angiogenic switch activated by thrombin. Blood. 2013; 121(2): 392–402.
  98. Curry WJ, Johnston CF, Hutton JC, et al. The tissue distribution of rat chromogranin A-derived peptides: evidence for differential tissue processing from sequence specific antisera. Histochemistry. 1991; 96(6): 531–538.
  99. Portela-Gomes GM, Stridsberg M. Selective processing of chromogranin A in the different islet cells in human pancreas. J Histochem Cytochem. 2001; 49(4): 483–490.
  100. Portela-Gomes GM, Stridsberg M. Chromogranin A in the human gastrointestinal tract: an immunocytochemical study with region-specific antibodies. J Histochem Cytochem. 2002; 50(11): 1487–1492.
  101. Baker RL, Bradley B, Wiles TA, et al. Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes. J Immunol. 2016; 196(1): 39–43.
  102. Li Yi, Zhou L, Li Y, et al. Identification of autoreactive CD8+ T cell responses targeting chromogranin A in humanized NOD mice and type 1 diabetes patients. Clin Immunol. 2015; 159(1): 63–71.
  103. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002; 298(5597): 1395–1401.
  104. Delong T, Baker RL, He J, et al. Diabetogenic T-cell clones recognize an altered peptide of chromogranin A. Diabetes. 2012; 61(12): 3239–3246.
  105. Gottlieb PA, Delong T, Baker RL, et al. Chromogranin A is a T cell antigen in human type 1 diabetes. J Autoimmun. 2014; 50: 38–41.
  106. Jin N, Wang Y, Crawford F, et al. N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proc Natl Acad Sci U S A. 2015; 112(43): 13318–13323.
  107. Sollid L. Molecular Basis of Celiac Disease. Annu Rev Immunol. 2000; 18(1): 53–81.
  108. Blancou P, Mallone R, Martinuzzi E, et al. Immunization of HLA class I transgenic mice identifies autoantigenic epitopes eliciting dominant responses in type 1 diabetes patients. J Immunol. 2007; 178(11): 7458–7466.
  109. Serreze DV, Marron MP, Dilorenzo TP. "Humanized" HLA transgenic NOD mice to identify pancreatic beta cell autoantigens of potential clinical relevance to type 1 diabetes. Ann N Y Acad Sci. 2007; 1103: 103–111.
  110. Takaki T, Marron MP, Mathews CE, et al. HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol. 2006; 176(5): 3257–3265.
  111. Kogawa EM, Grisi DC, Falcão DP, et al. Impact of glycemic control on oral health status in type 2 diabetes individuals and its association with salivary and plasma levels of chromogranin A. Arch Oral Biol. 2016; 62: 10–19.
  112. Kogawa EM, Grisi DC, Falcão DP, et al. Salivary function impairment in type 2 Diabetes patients associated with concentration and genetic polymorphisms of chromogranin A. Clin Oral Investig. 2016; 20(8): 2083–2095.
  113. Mahapatra NR, O'Connor DT, Vaingankar SM, et al. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest. 2005; 115(7): 1942–1952.
  114. Gayen JR, Saberi M, Schenk S, et al. A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem. 2009; 284(42): 28498–28509.
  115. Tang K, Pasqua T, Biswas A, et al. Muscle injury, impaired muscle function and insulin resistance in Chromogranin A-knockout mice. J Endocrinol. 2017; 232(2): 137–153.
  116. Bandyopadhyay GK, Vu CU, Gentile S, et al. Catestatin (chromogranin A(352-372)) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J Biol Chem. 2012; 287(27): 23141–23151.
  117. González-Yanes C, Sánchez-Margalet V. Pancreastatin, a chromogranin A-derived peptide, inhibits leptin and enhances UCP-2 expression in isolated rat adipocytes. Cell Mol Life Sci. 2003; 60(12): 2749–2756.
  118. Sánchez V, Lucas M, Calvo JR, et al. Glycogenolytic effect of pancreastatin in isolated rat hepatocytes is mediated by a cyclic-AMP-independent Ca(2+)-dependent mechanism. Biochem J. 1992; 284 ( Pt 3): 659–662.
  119. Ahrén B, Bertrand G, Roye M, et al. Pancreastatin modulates glucose-stimulated insulin secretion from the perfused rat pancreas. Acta Physiol Scand. 1996; 158(1): 63–70.
  120. Sanchez V, Calvo JR, Goberna R. Glycogenolytic effect of pancreastatin in the rat. Biosci Rep. 1990; 10(1): 87–91.
  121. Sánchez-Margalet V, González-Yanes C, Najib S, et al. Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. Regul Pept. 2010; 161(1-3): 8–14.
  122. Valicherla GR, Hossain Z, Mahata SK, et al. Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics. 2013; 45(22): 1060–1071.
  123. Mosén H, Salehi A, Henningsson R, et al. Nitric oxide inhibits, and carbon monoxide activates, islet acid alpha-glucoside hydrolase activities in parallel with glucose-stimulated insulin secretion. J Endocrinol. 2006; 190(3): 681–693.
  124. Sánchez-Margalet V, González-Yanes C, Najib S. Pancreastatin, a chromogranin A-derived peptide, inhibits DNA and protein synthesis by producing nitric oxide in HTC rat hepatoma cells. J Hepatol. 2001; 35(1): 80–85.
  125. Tateishi K, Funakoshi A, Wakasugi H, et al. Plasma pancreastatin-like immunoreactivity in various diseases. J Clin Endocrinol Metab. 1989; 69(6): 1305–1308.
  126. Funakoshi A, Tateishi K, Shinozaki H, et al. Elevated plasma levels of pancreastatin (PST) in patients with non-insulin-dependent diabetes mellitus (NIDDM). Regul Pept. 1990; 30(2): 159–164.
  127. O'Connor DT, Cadman PE, Smiley C, et al. Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab. 2005; 90(9): 5414–5425.
  128. Sánchez-Margalet V, Valle M, Lobón JA, et al. Increased plasma pancreastatin-like immunoreactivity levels in non-obese patients with essential hypertension. J Hypertens. 1995; 13(2): 251–258.
  129. Sánchez-Margalet V, Lobón JA, González A, et al. Increased plasma pancreastatin-like levels in gestational diabetes: correlation with catecholamine levels. Diabetes Care. 1998; 21(11): 1951–1954.
  130. Ying W, Mahata S, Bandyopadhyay GK, et al. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity. Front Endocrinol (Lausanne). 2017; 8(5): 20–848.
  131. Kim SJ, Tang T, Abbott M, et al. AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue. Mol Cell Biol. 2016; 36(14): 1961–1976.
  132. Gayen JR, Gu Y, O'Connor DT, et al. Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology. 2009; 150(11): 5027–5035.
  133. Ying W, Mahata S, Bandyopadhyay GK, et al. Catestatin Inhibits Obesity-Induced Macrophage Infiltration and Inflammation in the Liver and Suppresses Hepatic Glucose Production, Leading to Improved Insulin Sensitivity. Diabetes. 2018; 67(5): 841–848.
  134. Degorce F, Goumon Y, Jacquemart L, et al. A new human chromogranin A (CgA) immunoradiometric assay involving monoclonal antibodies raised against the unprocessed central domain (145-245). Br J Cancer. 1999; 79(1): 65–71.
  135. Stridsberg M, Eriksson B, Oberg K, et al. A comparison between three commercial kits for chromogranin A measurements. J Endocrinol. 2003; 177(2): 337–341.
  136. Soell M, Feki A, Hannig M, et al. Chromogranin A detection in saliva of type 2 diabetes patients. Bosn J Basic Med Sci. 2010; 10(1): 2–8.
  137. Stridsberg M. Measurements of chromogranins and chromogranin-related peptides by immunological methods. Adv Exp Med Biol. 2000; 482: 319–327.
  138. Pregun I, Herszényi L, Juhász M, et al. Effect of proton-pump inhibitor therapy on serum chromogranin a level. Digestion. 2011; 84(1): 22–28.
  139. Glinicki P, Jeske W. Chromogranin A (CgA) — the influence of various factors in vivo and in vitro, and existing disorders on it's concentration in blood. Endokrynol Pol. 2010; 61(4): 384–387.
  140. Goetze JP, Alehagen U, Flyvbjerg A, et al. Chromogranin A as a biomarker in cardiovascular disease. Biomark Med. 2014; 8(1): 133–140.
  141. Kollipara S. Comorbidities associated with type 1 diabetes. School Nurse News. 2006; 23(4): 42–45.
  142. Glinicki P, Jeske W, Kapuścińska R, et al. Comparison of chromogranin A (CgA) levels in serum and plasma (EDTA2K) and the respective reference ranges in healthy males. Endokrynol Pol. 2015; 66(1): 53–56.
  143. Glinicki P, Kapuścińska R, Jeske W. The differences in chromogranin A (CgA) concentrations measured in serum and in plasma by IRMA and ELISA methods. Endokrynol Pol. 2010; 61(4): 346–350.
  144. Tsao KC, Wu JT. Development of an ELISA for the detection of serum chromogranin A (CgA) in prostate and non-neuroendocrine carcinomas. Clin Chim Acta. 2001; 313(1-2): 21–29.
  145. Popovici T, Moreira B, Schlageter MH, et al. Automated two-site immunofluorescent assay for the measurement of serum chromogranin A. Clin Biochem. 2014; 47(1-2): 87–91.
  146. van der Knaap RHP, Kwekkeboom DJ, Ramakers CRB, et al. Evaluation of a new immunoassay for chromogranin A measurement on the Kryptor system. Pract Lab Med. 2015; 1: 5–11.
  147. Ferrero S, Buffa R, Pruneri G, et al. The prevalence and clinical significance of chromogranin A and secretogranin II immunoreactivity in colorectal adenocarcinomas. Virchows Arch. 1995; 426(6): 587–592.
  148. Huegel R, Velasco P, De la Luz Sierra M, et al. Novel anti-inflammatory properties of the angiogenesis inhibitor vasostatin. J Invest Dermatol. 2007; 127(1): 65–74.
  149. Xiong W, Wang X, Dai D, et al. The anti-inflammatory vasostatin-2 attenuates atherosclerosis in ApoE mice and inhibits monocyte/macrophage recruitment. Thromb Haemost. 2017; 117(2): 401–414.
  150. Lugardon K, Raffner R, Goumon Y, et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem. 2000; 275(15): 10745–10753.
  151. Helle KB, Metz-Boutigue MH, Cerra MC, et al. Chromogranins: from discovery to current times. Pflugers Arch. 2018; 470(1): 143–154.
  152. Aardal S, Helle KB. The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept. 1992; 41(1): 9–18.
  153. Drees BM, Rouse J, Johnson J, et al. Bovine parathyroid glands secrete a 26-kDa N-terminal fragment of chromogranin-A which inhibits parathyroid cell secretion. Endocrinology. 1991; 129(6): 3381–3387.
  154. Lugardon K, Chasserot-Golaz S, Kieffer AE, et al. Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47-66)-derived peptide. J Biol Chem. 2001; 276(38): 35875–35882.
  155. Zhang D, Shooshtarizadeh P, Laventie BJ, et al. Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS One. 2009; 4(2): e4501.
  156. Salem S, Jankowski V, Asare Y, et al. Identification of the Vasoconstriction-Inhibiting Factor (VIF), a Potent Endogenous Cofactor of Angiotensin II Acting on the Angiotensin II Type 2 Receptor. Circulation. 2015; 131(16): 1426–1434.
  157. Galindo E, Rill A, Bader MF, et al. Chromostatin, a 20-amino acid peptide derived from chromogranin A, inhibits chromaffin cell secretion. Proc Natl Acad Sci U S A. 1991; 88(4): 1426–1430.
  158. Strub JM, Goumon Y, Lugardon K, et al. Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173-194 from bovine adrenal medullary chromaffin granules. J Biol Chem. 1996; 271(45): 28533–28540.
  159. Gayen JR, Zhang K, RamachandraRao SP, et al. Role of reactive oxygen species in hyperadrenergic hypertension: biochemical, physiological, and pharmacological evidence from targeted ablation of the chromogranin a (Chga) gene. Circ Cardiovasc Genet. 2010; 3(5): 414–425.
  160. Bandyopadhyay GK, Lu M, Avolio E, et al. Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance. Diabetes. 2015; 64(1): 104–116.
  161. Cadman PE, Rao F, Mahata SK, et al. Studies of the dysglycemic peptide, pancreastatin, using a human forearm model. Ann N Y Acad Sci. 2002; 971: 528–529.
  162. Aslam R, Marban C, Corazzol C, et al. Cateslytin, a chromogranin A derived peptide is active against Staphylococcus aureus and resistant to degradation by its proteases. PLoS One. 2013; 8(7): e68993.
  163. Zaet A, Dartevelle P, Daouad F, et al. D-Cateslytin, a new antimicrobial peptide with therapeutic potential. Sci Rep. 2017; 7(1): 15199.
  164. Briolat J, Wu SD, Mahata SK, et al. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci. 2005; 62(3): 377–385.
  165. O'Connor DT, Kailasam MT, Kennedy BP, et al. Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens. 2002; 20(7): 1335–1345.
  166. Angelone T, Quintieri AM, Brar BK, et al. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology. 2008; 149(10): 4780–4793.
  167. Bassino E, Fornero S, Gallo MP, et al. A novel catestatin-induced antiadrenergic mechanism triggered by the endothelial PI3K-eNOS pathway in the myocardium. Cardiovasc Res. 2011; 91(4): 617–624.
  168. Theurl M, Schgoer W, Albrecht K, et al. The neuropeptide catestatin acts as a novel angiogenic cytokine via a basic fibroblast growth factor-dependent mechanism. Circ Res. 2010; 107(11): 1326–1335.
  169. Mohseni S, Emtenani S, Emtenani S, et al. Antioxidant properties of a human neuropeptide and its protective effect on free radical-induced DNA damage. J Pept Sci. 2014; 20(6): 429–437.
  170. Fasciotto BH, Denny JC, Greeley GH, et al. Processing of chromogranin A in the parathyroid: generation of parastatin-related peptides. Peptides. 2000; 21(9): 1389–1401.
  171. Fasciotto BH, Trauss CA, Greeley GH, et al. Parastatin (porcine chromogranin A347-419), a novel chromogranin A-derived peptide, inhibits parathyroid cell secretion. Endocrinology. 1993; 133(2): 461–466.
  172. Kirchmair R, Leitner B, Fischer-Colbrie R, et al. Large variations in the proteolytic formation of a chromogranin A-derived peptide (GE-25) in neuroendocrine tissues. Biochem J. 1995; 310 ( Pt 1): 331–336.
  173. Lorenz K, Gramlich OW, Grus FH, et al. GE-25-like immunoreactivity in the rat eye. Peptides. 2012; 36(2): 286–291.
  174. Loh YP, Koshimizu H, Cawley NX, et al. Serpinins: role in granule biogenesis, inhibition of cell death and cardiac function. Curr Med Chem. 2012; 19(24): 4086–4092.
  175. Tota B, Gentile S, Pasqua T, et al. The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac β-adrenergic-like inotropes. FASEB J. 2012; 26(7): 2888–2898.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl