Endokrynologia Polska 3/2016-Diagnosis, treatment, and prognosis in patients with liver metastases from follicular thyroid carcinoma (FTC)


Diagnosis, treatment, and prognosis in patients with liver metastases from follicular thyroid carcinoma (FTC)

Rak pęcherzykowy tarczycy z przerzutami do wątroby – diagnostyka, leczenie i prognoza

Małgorzata Kałużna1, Monika Gołąb1, Rafał Czepczyński1, Grzegorz Dworacki1, Danuta Bręborowicz1, Marcin Orłowski2, Katarzyna Katulska2, Aleksandra Klimowicz1, Maria Gryczyńska1, Marek Ruchała1, Katarzyna Ziemnicka1

1Department of Endocrinology, Metabolism, and Internal Medicine, Poznan University of Medical Sciences, Poland

2Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, Poland

Katarzyna Ziemnicka M.D., Department of Endocrinology, Metabolism, and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego St, 49, 60–355 Poznan, Poland, phone: 61 869 13 30, fax: 61 869 16 82, e-mail: kaziem@ump.edu.pl


Follicular thyroid carcinoma (FTC) is the second most common type of thyroid cancer (TC) and accounts for approximately 10% of all TC cases. Liver metastases are a rare presentation in 0.5–1% of follicular thyroid cancers, usually occurring in the setting of widely disseminated FTC disease, and their presence is associated with poor prognosis. Until now, there have been only 30 cases of FTC liver metastases described in the literature.

Herein, we review publications and describe diagnostic tools that may be used in the diagnosis and follow-up of FTC metastases to the liver, including biopsy and imaging techniques like US, CT, MRI, SPECT, PET, and radioiodine scintigraphy. We also present and discuss current methods of treatment, e.g. TSH suppressive therapy with levothyroxine, surgery, radiofrequency ablation (RFA), transarterial embolisation (TAE), liver transarterial chemoembolisation (TACE), chemotherapy with cisplatin and doxorubicin, treatment with Indium-111-octreotide (or its analogues), and tyrosine kinase inhibitors (sorafenib, sunitinib).

At the end we describe the course, results of diagnostics, and treatment in a patient with large multiple FTC metastases to the liver.

(Endokrynol Pol 2016; 67 (3): 332–347)


Key words: differentiated thyroid carcinoma (DEC); follicular thyroid cancer (FTC); liver metastases; positron emission tomography (PET); whole body scintigraphy (WBS)



Rak pęcherzykowy tarczycy (FTC) jest drugim najczęstszym typem raka tarczycy (TC) i stanowi około 10% wszystkich TC. Przerzuty do wątroby występują w 0,5–1% przypadków FTC, zwykle w przypadku znacznie zaawansowanej choroby nowotworowej i wiążą się ze złą prognozą. Do tej pory, tylko 30 przypadków FTC z przerzutami do wątroby zostało opisanych w literaturze.

W niniejszej pracy dokonano przeglądu literatury i opisu metod diagnostycznych jakie mogą być użyte w badaniu i kontroli przerzutów FTC do wątroby, w tym biopsji, technik obrazowych, takich jak: USG, KT, MRI, SPECT, PET i scyntygrafii jodowej. Zaprezentowano i omówiono aktualne metody leczenia: terapię F-tyroksyną w dawce supresyjnej, leczenie operacyjne, ablację prądem o częstotliwości fal radiowych (RFA), embolizację przeztętniczą (TAE), przeztętniczą chemoembolizację, chemioterapię z użyciem cisplatyny i doksyrubicyny, leczenie z użyciem analogów somatostatyny w tym octreotydu znakowanego izotopem indu 111In, czy terapię z użyciem inhibitorów kinazy tyrozynowej (sorafenib, sunitynib).

Na końcu opisano przebieg choroby, wyniki badań diagnostycznych i podjęte leczenie u chorej z ogromnymi mnogimi przerzutami FTC do wątroby.

(Endokrynol Pol 2016; 67 (3): 332–347)


Słowa kluczowe: zróżnicowany rak tarczycy; rak pęcherzykowy tarczycy; przerzuty do wątroby; pozytronowa tomografia emisyjna (PET); scyntygrafia całego ciała


Follicular thyroid carcinoma (FTC) accounts for up to 10% of all thyroid malignancies in iodine-sufficient regions of the world. In iodine-deficient areas the prevalence of FTC is higher it accounts for up to 25–40% of thyroid malignancies [1, 2]. FTC tends to occur between the fourth and the sixth decade of the patient’s life, later than in the case of PTC (between the third and fifth decade of life) [3]. Female predominance in FTC is observed with a female-to-male ratio of 3:1. Follicular cancer has a tendency to be more aggressive than PTC and is more often diagnosed as a larger tumour with distant metastases at initial diagnosis [4, 5].

In contrast with PTC, FTC usually metastasises via haematogenous dissemination, although visceral metastases from FTC are very rare and occur in 10 to 15% of patients at initial presentation [6]. Tumours less than 2 cm in diameter are usually not associated with metastatic spread [6]. FTC metastasises mostly to the bone and lungs. Rare sites of FTC metastases include the patient’s brain, kidneys, bladder, liver, breasts, and skin [4, 7]. The rate of liver metastases from DTCs is in general about 0.5%, but in autopsy involvement of the liver was reported to be in about 25% of FTC patients [8–11].

Until now 30 cases of liver metastases from FTC (Table I) have been described in literature. The reported frequency of isolated metastases to the liver from DTC is below 1.0% [11, 12]. When liver metastasis occurs, metastatic disease usually involves multiple sites including lung, bone, and brain [13–20].

Table I. A summary of the review of the literature describing patients with liver metastases from FTC

Number of patients Other metastases Liver metastasis (single/multiple) Uptake of I–131 in the liver Uptake of FDG in the liver Treatment of liver metastasis/es Authors
6 NA NA NA NA Chemotherapy with TKI in 4 cases (in 1 case preceded by a liver resection – tumorectomy) Brient et al. [66]
1 Bone, breast NA NA NA n/a Tanriverdi et al. [79]
1 Bone Multiple NA NA No (patient refusal) Nayak et al. [80]
1 Bone, lymph nodes Single not clear NA I–131 Chiofalo et al. [81]
1 Bone Multiple NA + + + RFA combined with embolization and 1–131 Wertenbroek et al. [49]
1 Bone, kidney Multiple + + + NA I–131 Faivre-Defrance et al. [21]
1 Bone Single NA NA I–131 (lack of patient’s consent to liver metastasis resection) Kelessis et al. [20]
1 No Single NA NA Partial liver resection Kouso et al. [82]
1 No Single + + + NA I–131 Kraft et al. [15]
1 No Single NA NA Partial liver resection Kondo et al. [19]
1 No Single + + + NA Percutaneous interstitial laser photocoagulation, I–131 Guglielmi et al. [18]
1 No multiple + + + NA n/a Graves et al. [83]
9 Multiple – lymph nodes in 5 cases, bone in 8 cases, lung in 4 cases 6 single, 3 multiple + + + in 8 cases NA I–131 in 8 cases, in 5 cases combined with radiotherapy; chemotherapy in 1 case Shah et al. [84]
2 Bones, lung in both cases NA + + + NA I–131 in both cases Atmaram et al. [36]
2 I – bone;
II – lung, mediastinum
NA + + + NA I–131 in both cases Woolfenden et al. [31]

NA – not analysed; TKI – tyrosine kinase inhibitor; RFA – radiofrequency ablation

The time elapsed between the diagnosis of the thyroid cancer and the expression of the metastases ranges from the moment of initial thyroid cancer diagnosis to 32 years, in the literature [20, 21].

Well-differentiated FTC results in small functionality of its metastases, high iodine uptake, and production of thyroglobulin [8, 20, 21]. Thyrotoxicosis in the case of FTC metastases is usually the result of large volume multiple metastases, often involving bones [22, 23]. It is observed more often in iodine-deficient regions. Thyrotoxicosis was described only in few cases of FTC with liver metastases by Guglielmi et al. and Kondo et al. [18, 19].

Liver biopsy and imaging study in FTC metastases

Liver tumours are usually detected incidentally by US and/or CT. Liver fine needle aspiration biopsy (FNAB) and core biopsy are valuable tools in establishing a definitive diagnosis of focal liver masses in suspected metastatic liver disease [24].

According to the latest American Association for the Study of Liver Diseases (AASLD) and European Association for the Study of the Liver (EASL) guidelines, in liver lesions greater than 2 cm, non-invasive diagnostic strategies based on computed tomography (CT) and magnetic resonance imaging (MRI) should be followed with liver biopsy. Liver biopsy can give false negative results even with use of immunohistochemical techniques [25]. The rate of false negative results reaches up to 30% [26]. If the lesion grows or imaging patterns vary, a second biopsy is recommended [27].

Percutaneous FNAB of abdominal lesions guided by imaging methods has been used in diagnostics for over 30 years [28]. Fine needle aspiration biopsy has sensitivity greater than 85% and specificity as high as 100% [28, 29]. Data on biopsy of DTC hepatic metastases are very limited. Follicular cancer metastasis can mimic cytologically hepatocellular cancer [30].

PostterapeuticaI-131-whole body scan (WBS) and 1–131 single photon emission computed tomography (I-131-SPECT-CT) are useful in anatomic and metabolic assessment of the lesion. High uptake of 1–131 in the liver and radioactivity in the gastrointestinal tract even for many hours after the dose make it hard to distinguish between areas with pathological or physiological uptake of radioiodine. Careful evaluation of the liver on the scans to distinguish between diffuse and focal radioiodine accumulation in liver is essential. A focal accumulation is typical for functional liver metastasis with preserved thyroxin synthesis [15]. FTC tumours are usually well differentiated, but liver masses are usually 1–131 negative, which can indicate dedifferentiation of FTC. Functional (accumulating radioiodine) hepatic metastases from DTC are rare [11, 31, 32]. False positive findings of focal hepatic uptake in postterapeutid-131-WBS have been described in the literature, e.g. in the case of liver abscess [33]. Stokkel et al. have reported a high diagnostic value of Indium-111-octreotide scintigraphy in patients with DTC metastatic disease and negative I-131-WBS that does not respond to RAI treatment. Whole body scan after radioactive iodine (RAI) treatment could be a precise and sensitive tool for detecting functioning metastases [34]. Diffuse liver uptake on 1–131 whole-body scans is related to the quantity of administrated I-131-dose and the ability to uptake radioactive iodine (RAID) [32]. Focal tracer uptake is typically seen in functional hepatic metastases from DTC whereas diffuse hepatic uptake has been reported also in patients after RAI therapy [31, 32, 35, 36]. Diffuse liver uptake could be associated with the presence of functioning residual thyroid or metastatic lesions in other sites [37].

The liver is an important organ in the metabolism of thyroid hormones, responsible for concentration of thyroxine (T4), in 40% of its deiodination and in 70% of production of triiodothyronine (T3) [38]. Hepatic accumulation of radiolabeled thyroid hormones is present in patients with metastases, when thyroglobulin (Tg) is released from functioning tumour tissue and then metabolised and absorbed by the liver. Thyroid hormone status, medications, stress, infection, and severe concomitant diseases may change thyroxine metabolism and liver uptake. Also unspecific serum iodinated proteins may be responsible for liver visualisation [32, 37].

The predominance of the significant diagnostic value of SPECT-CT over planar imaging is invaluable. Results of SPECT-CT may modify management in as many as 25–50% of patients [39, 40]. The sensitivity of SPECT/CT for identification of iodine uptake in the lungs, liver, and bone is significantly better than that by planar scanning in postsurgical patients, helping to avoid additional imaging me the ids and to change the management and implication for follow-up if needed [41].

In the case of low or complete lack of radioiodine uptake, 18F-fludrodeoxyglucose-positron emission tomography (FDG-PET) is recommended due to its diagnostic and prognostic impact. PET constitutes an expensive but effectual instrument in restaging DTC patients with metastatic disease to groups of low (18F-fluoro-2-deoxyglucose (FDG negative) and high risk (FDG positive) of thyroid cancer mortality [42]. Age over 45 years during PET examination, SUV max, distant metastatic processes, and volume of FDG-avid disease emerged as strong survival predictors [43]. In a study by Robbins et al., only initial PET scan was considered, but probably a series of FDG scans could provide a better follow-up of the disease. In the same study, the influence of TSH on FDG retention was not shown, but some other reports found that kind of dependence [44]. Hong et al. also found an inverse relationship between the presence of FDG uptake, maximum standardised uptake value (SUV max), and survival of individuals with DTC [45]. Scintigraphy and PET remain the imaging methods to determine the functional status of thyroid cancer metastases.

Treatment of FTC with distant metastases

Proper treatment of metastasis disease is crucial for further life-prognosis. If possible, excision of the metastatic lesion, TSH suppression therapy with L-thyroxine, and I–131 therapy if metastases concentrate radioiodine is pivotal.

RAI therapy is administrated for remnants ablation after surgery and as an adjuvant therapy. FTC metastases concentrate I–131 in 75% of patients [46]. In case of distant metastases, especially those larger than 1 cm in size and localised in bone, RAI therapy is claimed to be less effective [47].

Solitary, resectable liver metastasis from DTC are present extremely rarely. An isolated liver metastasis from DTC should be considered for surgical resection – anatomic segmental resection, which gives a better chance for longer survival [17, 48].

Radiofrequency ablation (RFA) is implemented for various types of liver tumours, also in palliative treatment of liver metastases from thyroid carcinoma to release symptoms [49]. The ablation could be performed via laparotomy or percutaneously. RFA should be taken into account as a cytoreductive modality increasing the effectiveness of RAI treatment (in RAI-avid metastases), but also in patients with no or low RAI uptake [49, 50]. In lesions larger than 5 cm, RFA is reported to be less effective [49]. There are two documented cases of RFA for liver metastases from medullary thyroid carcinoma and one from FTC [18, 49]. Focal recurrences of the ablated liver metastases have not been observed during follow-up [49]. RAI effectiveness and safety could be improved by initial percutaneous interstitial laser photocoagulation in cases of hyperfunctioning and unresectable liver metastases from DTC [18].

Transarterial embolisation (TAE) is an additional option for the management of liver metastasis [51, 52]. TAE is a tool used successfully in the treatment of hepatocellular cancer and liver metastasis from gastrointestinal tract, neuroendocrine tumours, etc. [53–55]. One example of TEA treatment combined with RFA and RAI in a patient with FTC and liver metastases with survival of only six months was described [49].

Positive reports on liver transarterial chemoembolisation (TACE), combination of TEA and chemotherapy in hepatic metastases only from medullary thyroid cancer (MTC) with partial radiological tumour response up to 42%, and stabilisation of liver metastases up to 42–60% were published [56, 57].

Chemotherapy with cisplatin and doxorubicin is another treatment modality in metastases that are refractory to RAI and unresectable [58].

In patients with metastatic DTC disease that does not respond to treatment with high-dose I–131, treatment with Indium-111-octreotide or its analogues is another opportunity [59].

The therapy with tyrosine kinase inhibitors (TKI) holds high expectations in the treatment of thyroid metastases. The ability of sorafenib to inhibit angiogenesis and to block several protein kinases, especially BRAF-1, RET, VEGFR, PDGFRA, and c-KIT led to several phase II and III studies including DTC patients [60, 61]. Sorafenib in the form of oral tablets was permitted by the U.S. Food and Drug Administration (FDA) for use in the treatment of late-stage metastatic DTC in 2013. The effectiveness of sorafenib in DTC differs depending on the trial, and partial response (PR) rate ranges from 6% to 49% [62]. In a recent large trial progressive-free survival (PFS) reached 10.8% in I-131-resistant DTCs (compared to PFS 5.8% in a placebo group) [63]. Skin rash, diarrhoea, and hand and foot syndrome are the most common side effects of sorafenib [60–64].

Six patients with DTC and metastases to the liver were treated with tyrosine kinase inhibitors (sorafenib, sunitinib) out of clinical trials and were included in a retrospective study of TUTHYREF network. Lung (with a median tumour response of 22%) and hepatic lesions (with a median tumour response of 18%) were the most reactive DTC metastases to the treatment, although bone and pleural metastases were the most recalcitrant ones. DTC patients’ median PFS on sorafenib ranged from 7.2–19.8 months in previous studies [60, 61, 63, 65]. Brient et al. described eight more patients with DTC (including four cases of FTC) and concomitant liver metastases treated with TKI. In their work the median survival after diagnosis of liver metastasis from DTC was significantly longer in patients who were put on TKI treatment compared with patients who did not received any specific therapy (23.6 vs. 3.9 months, p < 0.001). In this study, patients with bilobar liver involvement were excluded [66]. The mechanism of development of the resistance of DTC to TKI is currently being studied and could be the reason for metastases’ dormancy [67]. To conclude, sorafenib activity was tested in a relatively small group of patients with DTC liver metastases and its efficiency in FTC not 1–131 avid liver metastases is not well documented.

Prognosis in FTC patients with distant metastases

Although FTC tends to have an excellent prognosis, the presence of metastatic disease results in a bad prognosis [68]. In a large study by Hundahl et al. a 10-year relative survival rate of 85% for FTC and 15% cancer-mortality rate were found [69], and a 20-year cancer-specific survival rate of 73.7% for all FTCs was recognised by Verbürg et al. [5]. In FTC patients without distant metastatic disease 20-year disease-specific mortality rates reached 80.2%, which was significantly lower than that for non-metastatic PTC (93.1%) [5]. In PTC and FTC patients with distant metastatic disease, there no significant difference in 20-year disease-specific mortality in Cox regression was observed [5, 70].

DTC liver metastases prognosis is poor, according to previously described cases [11]. Apart from the site of metastasis, there are a few other characteristics that were found to be prognostic factors. Age over 45 years and multiple organ involvement are both independent factors of thyroid cancer mortality [71]. Typically, patients over the age of 40 have a more aggressive disease and are less likely to respond to radioiodine therapy [7, 72]. According to the literature, women may have a better prognosis than men [7].

The impact of iodine supplementation on mortality from FTC is not clear [73]. DTC accompanied by distant metastasis at initial diagnosis seems to have auspicious outcomes as compared with DTC patients who develop distant metastasis after primary treatment [74]. Metastases iodine avidity has an important impact on the disease-specific survival (DSS) rate [74]. Individuals with radioactive iodine avid and responsive DTC metastases are characterised by a 10-year survival rate of 90%, whereas patients with radioiodine non-avid and refractory DTC metastatic tumours have a 10-year survival rate of about 10% [50]. Although Robbins et al. found that patients with concentration of I–131 on scans had significantly poorer survival, compared with the rest, which can be the result of overlooking disease evidence in that specific group of patients [42]. In another study by Hong et al., RAI – in metastatic lesions correlated with reduced cancer-specific survival [75]. As mentioned above, according to several reports no 18F-FDG activity in the distant metastases of DTC is prognostically favourable [42, 75, 76]. In the postoperative evaluation of DTC, FDG-PET is a sensitive tool to diagnose metastases, but negative PET does not exclude the presence of non-functional, FDG-negative metastatic lesions. FDG-PET findings correlate with the stage of the disease, progression-free survival (PFS), and long-term outcome [42, 76, 77]. FDG PET, conducted even before thyroidectomy, is postulated to be a highly valuable predictor for long-term survival in high-risk patients with DTC [78].


Due to the risk of recurrence and emergence of metastases, careful surveillance of the patients with FTC should be performed routinely. Methods of evaluation for the presence of distant metastases besides thyroglobulin level should also include sensitive imaging techniques. Ultrasound imaging, 131–I WBS, and SPECT-CT constitute the standard methods in the management of patients with DTC. CT and PET are supporting methods of high diagnostic value, especially in cases of non-avid metastases in I–131 scans. Both SPECT-CT and PETCT present high diagnostic performance in detecting metastatic spread in thyroid cancer. FDG-PET may fail to identify all DTC metastases. CT in combination with biopsy may be a better, cheaper diagnostic tool, although PET seems to be valuable instrument in the prediction process.

Once distant metastatic disease is diagnosed in DTC patients, FDG-PET helps to identify high- and low-risk individuals.

Because of the rarity of patients with metastases of FTC to the liver, prognosis and follow-up data are limited. Establishing algorithms of dealing with rare visceral metastases from DTC, especially unresectable ones, is necessary. Collecting more data on rare DTC metastases should allow the best outcomes in the diagnosis and treatment of patients with this rare metastases localisation.

Patient with liver metastases of FTC – case report

A 67-year-old patient was referred to tire Endocrinology Outpatient Department in February 2013 because of a history of hyperthyroidism, treated with radioiodine administered twice approximately 20 years ago. Additionally, the patient had been treated for hypertension and had complained of recurrent laryngeal and bronchial infections. The patient had no history of diabetes, cardiac, pulmonary, or renal disease.

The ultrasound examination of the thyroid gland revealed a nodule in the right lobe, 20 × 20 mm in size. Fine-needle aspiration biopsy (FNAB) of the lesion was performed. The cytology results disclosed carcinoma cells, probably papillary thyroid carcinoma (PTC). At that time the patient was euthyroid. The patient was referred to the surgical ward for total thyroidectomy. In April 2013 total thyroidectomy with central lymphadenectomy was conducted. The final histopathology diagnosis was follicular thyroid cancer, pT2N0 stage, with microinvasion of the vessels (maximal diameter of the tumour 21 mm, immunohistochemistry results: calcitonin – negative; thyroglobulin – positive) (Fig. 1A-C). In September 2013 the patient was admitted to the Endocrinology Department for diagnostics and ablative radioiodine treatment (RIT). The patient received 142mCi (5.3 GBq) of radioiodine(I-131) under endogenous TSH stimulation (thyroglobulin (Tg) > 1000 ng/mL, antithyroglobulin antibodies (aTg) > 4000 IU/mL). The chest X-ray was normal. Thyroid ultrasound revealed small remnants of both thyroid lobes. A whole body scan after radioiodine treatment (Infinia Hawkeye Gamma Camera; GE Healthcare) showed only bifocal uptake in the thyroid bed and nonspecific diffuse liver uptake. In an additionally performed SPECT-CT only degenerative joint disease (arthritis) in the spine was additionally exposed. Subsequently, the patient received a suppressive dose of levothyroxine (LT4).

Figure 1. (A, B) encapsulated primary tumor mass invading a capsule (HE, 20×); (C) primary tumor spread to a vessel in a capsule (HE, 40×); (D) secondary tumor, metastasis to the liver, cytological morphology details shows possible follicular thyroid cancer origin of the tumor (HE, 40×); immunohistochemistry evaluation confirms the type of differentiation; (E) metastasis to the liver, thyroglobulin (+) cytoplasmic reaction; (F) metastasis to the liver, TTF1 (+) nuclear reaction. The other performed immunohistochemistry reactions Cytokeratin 7 (+/-), Cytokeratin 19 (-), HEPPAR (-), CEA (-), AFP (-) are not shown

The patient came to a general practitioner (GP) in December 2013 due to abdominal pain. The laboratory tests showed slightly increased ECR (19 nun, normal range < 16 nun) and gamma-glutamyl transpeptidase (GGTP) – 73 U/L (normal range < 40 U/L), with bilirubin, alkaline phosphatase (ATP), alanine aminotransferase (ATT), and asparagine aminotransferase (AST) within normal range. Abdominal ultrasound revealed a significantly enlarged liver with heterogeneous echogenicity. The right liver lobe was completely filled with a solid mass of polymorphic structure with blurred margins. In the left liver lobe a solid lesion of about 90 × 80 mm and a cyst of size 23 mm were found.

The patient was referred to the Greater Poland Cancer Centre for further diagnostics, where computed tomography colonography (CTC) was performed. The examination showed no colonic pathology. At tire same time, multiple hepatic masses were diagnosed: two large tumours with dimensions: 100 mm (segment 3) and 145 mm (segment 5/6) and four smaller liver lesions of size: 30 mm (segment 2/3), 17 mm (segment 7), 14 mm (segment 4), and 12 mm (segment 1). These lesions were interpreted as massive metastases or hepatocellular cancer. Additionally, lipid-rich adenoma of tire left adrenal gland (18 mm in size) as well as a subpleural nodule (7 mm) in the left lung was found. Tumour marker levels (CEA, alpha-fetoprotein, CA-125, CA-15.3, CA-19.9) were within normal ranges. FNAB of tire liver under computed tomography (CT) control was performed two days after the CT colonography. The cytological result based on cell morphology and immunohistochemistry stainings: Ki-671 % positive tumour nuclei, thyreoglobulin(+), TTF-1(+), HEPPAR(-), cytokeratin 7(+/-), cytokeratin 19(-), CEAp(-), AFP(-), and CD34(-), confirmed the presence of follicular thyroid cancer metastases (Fig. ID, IE, IF).

In February 2014 the patient returned to the Endocrinology Department for an imaging control and biochemical study. The patient reported discomfort in the abdomen and bloating. Tg level was above 50,000 ng/mL, anti-Tg antibodies level was 2721 IU/mL (normal range < 60 IU/mL). In chest CT small nodules in both lungs, up to 8 mm diameter, of uncertain origin, were described. In abdominal CT three large liver tumours were found (diameters: 93 mm, 153 mm, and 17 mm) and multiple smaller tumours.

A PET/CT scan (PET/CT scanner Discovery ST, GE Healthcare) performed in February 2014 showed two large hepatic masses with only slight accumulation of 18F-FDG on the periphery (SUVmax = 2.9 vs. 2.4 in the normal liver parenchyma) (Fig. 2A, 2B). Two pulmonary nodules of 5 mm and 7 mm in diameter were visualised as well. No tracer uptake in these nodules was observed (the metastatic character could not be excluded). In the left adrenal gland a nodule of 16 mm was disclosed showing no 18F-FDG accumulation, interpreted as a benign lesion.

Figure 2. (A, B) PET/CT until the use of 18F-FDG showed only slight accumulation of the tracer on the periphery of large hepatic masses. The activity was only slightly higher than physiologic activity of the hepatic tissue (SUVmax = 2.9 vs. 2.4). No 18F-FDG accumulation in the central hypodense areas of the lesions indicated central necrosis in the metastatic foci. No focal uptake in any other organ was detected with PET/CT

The patient received 144 mCi (5.3 GBq) of radioiodine in May 2014 under recombinant human TSH (rhTSH, Thyrogen, Genzyme) stimulation. Post-radioactive iodine therapy (post-RAI) scan revealed moderately avid diffuse liver uptake with moderate accumulation of tracer in the lower part of the right lobe of the liver (Fig. 3).

Figure 3. 131-iodine post-therapy whole body scan after second I–131 dose (144mCi) showed moderate tracer accumulation within lower part of the right liver lobe


The follow-up abdominal CT in August 2014 showed a progression of metastases in the liver (113 × 92 mm and 35 mm in segment 2/3, 190 × 130 × 190 mm in the right lobe) (Fig. 4). Compression of vena cava inferior (VCI) was reported, without signs of thrombosis in Doppler ultrasound examination.

Figure 4. Multi-row-detector Computed Tomography (MDCT) of the liver with intravenous contrast administration – arterial phase. Metastatic lesion in left and right lobes. Hyperdense lesions in arterial phase, with pathological arteries in the tumor Maximum Intensity Projection (M1P) reconstruction coronal view

Because of the progression of FTC metastatic disease and no marked radioiodine-avidity of the lesions, liver transplantation was considered, but due to the patient’s age (over 65 years old) and a high risk of cancer recurrence within one year of immunosuppression, this type of treatment was contra-indicated. Instead, the sorafenib treatment was initiated (Nexavar, in a dose of 800 mg per day) in December 2014. The patient has been under careful observation until now.


  1. Correa P, Chen VW. Endocrine gland cancer. Cancer 1995; 75: 338–352.
  2. McHenry CR, Phitayakorn R. Follicular adenoma and carcinoma of the thyroid gland. Oncologist 2011; 16: 585–593. doi: 10.1634/theoncologist.2010–0405.
  3. Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med 1998; 338: 297–306. doi: 10.1056/NEJM199801293380506.
  4. Prasoon D. Follicular carcinoma of thyroid gland presenting as scalp metastasis. Acta Cytol 1998; 42: 451–452.
  5. Verburg FA, Mader U, Fuster M et al. Histology does not influence prognosis in differentiated thyroid carcinoma when accounting for age, tumour diameter, invasive growth and metastases. Eur J Endocrinol 2009; 160: 619–624. doi: 10.1530/EJE-08–0805.
  6. Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005; 103: 2269–2273. doi: 10.1002/cncr.21055.
  7. Grebe SK, Hay ID. Follicular thyroid cancer. Endocrinol Metab Clin North Am 1995; 24: 761–801.
  8. Studer H, Veraguth P, Wyss F. Thyrotoxicosis due to a solitary hepatic metastasis of thyroid carcinoma. J Clin Endocrinol Metab 1961; 21: 1334–1338. doi: 10.1210/jcem-21–10–1334.
  9. Silverberg SG, Hutter RV, Foote FW, Jr. Fatal carcinoma of the thyroid: histology, metastases, and causes of death. Cancer 1970; 25: 792–802.
  10. Silliphant WM, Klinck GH, Fevitin MS. Thyroid Carcinoma and Death. A Clinicopathological Study of 193 Autopsies. Cancer 1964; 17: 513–525.
  11. Song HJ, Xue YF, Qiu ZF et al. Uncommon metastases from differentiated thyroid carcinoma. Hell J Nucl Med 2012; 15: 233–240. doi: 10.1967/S002449910059.
  12. Salvatori M, Perotti G, Rufini V et al. Solitary liver metastasis from Hurthle cell thyroid cancer: a case report and review of the literature. J Endocrinol Invest 2004; 27: 52–56.
  13. Bakheet SM, Powe J, Hammami MM et al. Isolated porta hepatis metastasis of papillary thyroid cancer. J Nucl Med 1996; 37: 993–994.
  14. Tur GE, Asanuma Y, Sato T et al. Resection of metastatic thyroid carcinomas to the liver and the kidney: report of a case. Surg Today 1994; 24: 844–848.
  15. Kraft O. Hepatic metastasis of differentiated thyroid carcinoma. Nucl Med Rev Cent East Eur 2005; 8: 44–46.
  16. Malhotra G, Upadhye TS, Sridhar E et al. Unusual case of adrenal and renal metastases from papillary carcinoma of thyroid. Clin Nucl Med 2010; 35: 731–736. doi: 10.1097/REU.0b013e3181ea342b.
  17. Niederle B, Roka R, Schemper M et al. Surgical treatment of distant metastases in differentiated thyroid cancer: indication and results. Surgery 1986; 100: 1088–1097.
  18. Guglielmi R, Pacella CM, Dottorini ME et al. Severe thyrotoxicosis due to hyperfunctioning liver metastasis from follicular carcinoma: treatment with (131)I and interstitial laser ablation. Thyroid 1999; 9: 173–177.
  19. Kondo T, Katoh R, Omata K et al. Incidentally detected liver metastasis of well-differentiated follicular carcinoma of the thyroid, mimicking ectopic thyroid. Pathol Int 2000; 50: 509–513.
  20. Kelessis NG, Prassas EP, Dascalopoulou DV et al. Unusual metastatic spread of follicular thyroid carcinoma: report of a case. Surg Today 2005; 35: 300–303. doi: 10.1007/s00595–004–2922–2.
  21. Faivre-Defrance F, Carpentier P, Do Cao C et al. Thyrotoxicosis revealing metastases of unrecognized thyroid cancer: a report on two cases. Ann Endocrinol (Paris) 2007; 68: 389–394. doi: 10.1016/j.ando.2007.06.003.
  22. Paul SJ, Sisson JC. Thyrotoxicosis caused by thyroid cancer. Endocrinol Metab Clin North Am 1990; 19: 593–612.
  23. Bowden WD, Jones RE. Thyrotoxicosis associated with distant metastatic follicular carcinoma of the thyroid. South Med J 1986; 79: 483–486.
  24. McGahan JP, Bishop J, Webb J et al. Role of FNA and Core Biopsy of Primary and Metastatic Liver Disease. Int J Hepatol 2013; 2013: 174103. doi: 10.1155/2013/174103.
  25. Caturelli E, Solmi L, Anti M et al. Ultrasound guided fine needle biopsy of early hepatocellular carcinoma complicating liver cirrhosis: a multicentre study. Gut 2004; 53: 1356–1362. doi: 10.1136/gut.2003.032359.
  26. International Consensus Group for Hepatocellular Neoplasia The International Consensus Group for Hepatocellular N Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 2009; 49: 658–664. doi: 10.1002/hep.22709.
  27. European Association For The Study Of The L, European Organisation For R, Treatment Of C EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56: 908–943. doi: 10.1016/j.jhep.2011.12.001.
  28. Porter B, Karp W, Forsberg L. Percutaneous cytodiagnosis of abdominal masses by ultrasound guided fine needle aspiration biopsy. Acta Radiol Diagn (Stockh) 1981; 22: 663–668.
  29. Bret PM, Sente JM, Bretagnolle M et al. Ultrasonically guided fine-needle biopsy in focal intrahepatic lesions: six years’ experience. Can Assoc Radiol J 1986; 37: 5–8.
  30. Centeno BA Pathology of liver metastases. Cancer Control 2006; 13: 13–26.
  31. Woolfenden JM, Waxman AD, Wolfstein RS et al. Scintigraphic evaluation of liver metastases from thyroid carcinoma. J Nucl Med 1975; 16: 669–671.
  32. Ziessman HA, Bahar H, Fahey FH et al. Hepatic visualization on iodine-131 whole-body thyroid cancer scans. J Nucl Med 1987; 28: 1408–1411.
  33. Pena Pardo FJ, Crespo de la Jara A, Fernandez Morejon FJ et al. Solitary focus in the liver in a thyroid cancer patient after a whole body scan with 131 iodine. Rev Esp Med Nucl 2007; 26: 294–296.
  34. Haynie TP, Nofal MM, Beierwaltes WH. Treatment of thyroid carcinoma with 1–131. Results at fourteen years. JAMA 1963; 183: 303–306.
  35. Maayan ML, Eisenberg J, Lopez EM et al. Hepatic visualization after 1311 in patients with thyroid carcinoma. N Engl J Med 1976; 295: 1258–1259.
  36. Atmaram SH, Ganatra RD, Sharma SM et al. Functioning metastases in liver from thyroid carcinoma: case report. J Nucl Med 1975; 16: 919–921.
  37. Chung JK, Lee YJ, Jeong JM et al. Clinical significance of hepatic visualization on iodine-131 whole-body scan in patients with thyroid carcinoma. J Nucl Med 1997; 38: 1191–1195.
  38. Oppenheimer JH Thyroid hormones in liver. Mayo Clin Proc 1972; 47: 854–863.
  39. Tharp K, Israel O, Hausmann J et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging 2004; 31: 1435–1442. doi: 10.1007/s00259–004-l565–2.
  40. Chen L, Luo Q, Shen Y et al. Incremental value of 1311SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med 2008; 49: 1952–1957. doi: 10.2967/jnumed.108.052399.
  41. Grewal RK, Tuttle RM, Fox J et al. The effect of posttherapy 1311SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med 2010; 51: 1361–1367. doi: 10.2967/jnumed.l 10.075960.
  42. Robbins RJ, Wan Q, Grewal RK et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006; 91: 498–505. doi: 10.1210/jc.2005–1534.
  43. Wang W, Larson SM, Fazzari M et al. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 2000; 85: 1107–1113. doi: 10.1210/jcem.85.3.6458.
  44. Chin BB, Patel P, Cohade C et al. Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab 2004; 89: 91–95. doi: 10.1210/jc.2003–031027.
  45. Hong DS, Sebti SM, Newman RA et al. Phase I trial of a combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in advanced malignancies. Clin Cancer Res 2009; 15:7061–7068. doi: 10.1158/1078–0432.CCR-09–1241.
  46. Maxon HR, 3rd, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 1990; 19: 685–718.
  47. Ross DS. Long-term management of differentiated thyroid cancer. Endocrinol Metab Clin North Am 1990; 19: 719–739.
  48. Djenic B, Duick D, Newell JO et al. Solitary liver metastasis from follicular variant papillary thyroid carcinoma: A case report and literature review. Int J Surg Case Rep 2015; 6C: 146–149. doi: 10.1016/j.ijscr.2014.11.080.
  49. Wertenbroek MW, Links TP, Prins TR et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma. Thyroid 2008; 18:1105–1110. doi: 10.1089/thy.2008.0080.
  50. Durante C, Haddy N, Baudin E et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91: 2892–2899. doi: 10.1210/jc.2005–2838.
  51. Maeda K, Hashimoto M, Katai H et al. Transcatheter arterial chemoembolization to hepatic metastases from colorectal cancer. Gan To Kagaku Ryoho 1993; 20: 1542–1545.
  52. Roche A, Girish BV, de Baere T et al. Trans-catheter arterial chemoembolization as first-line treatment for hepatic metastases from endocrine tumors. Eur Radiol 2003; 13: 136–140. doi: 10.1007/s00330–002–1558–0.
  53. Clift AK, Frilling A. Management of patients with hepatic metastases from neuroendocrine tumors. Ann Saudi Med 2014; 34: 279–290. doi: 10.5144/0256–4947.2014.279.
  54. Nosher JL, Ahmed I, Patel AN etal. Non-operative therapies for colorectal liver metastases. J Gastrointest Oncol 2015; 6: 224–240. doi: 10.3978/j. issn.2078–6891.2014.065.
  55. Sun PL, Chen CL, Hsu SL et al. The significance of transarterial embolization for advanced hepatocellular carcinoma in liver transplantation. Transplant Proc 2004; 36: 2295–2296. doi: 10.1016/j.transproceed.2004.07.068.
  56. Lorenz K, Brauckhoff M, Behrmann C et al. Selective arterial chemoembolization for hepatic metastases from medullary thyroid carcinoma. Surgery 2005; 138: 986–993; discussion 993. doi: 10.1016/j.surg.2005.09.020.
  57. Fromigue J, De Baere T, Baudin E et al. Chemoembolization for liver metastases from medullary thyroid carcinoma. J Clin Endocrinol Metab 2006; 91: 2496–2499. doi: 10.1210/jc.2005–2401.
  58. Dulgeroff AJ, Hershman JM. Medical therapy for differentiated thyroid carcinoma. EndocrRev 1994; 15: 500–515. doi: 10.1210/edrv-15–4–500.
  59. Stokkel Mg Reigman HI, Verkooijen RB et al. Indium-111-Octreotide scintigraphy in differentiated thyroid cardnoma metastases that do not respond to treatment with high-dose 1–131. J Cancer Res Clin Oncol 2003; 129: 287–294. doi: 10.1007/s00432–003–0435–9.
  60. Gupta-Abramson V, Troxel AB, Nellore A et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 2008; 26:4714–4719. doi: 10.1200/JCO.2008.16.3279.
  61. Kloos RT, Ringel MD, Knopp MV et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 2009; 27:1675–1684. doi: 10.1200/JCO.2008.18.2717.
  62. Capdevila J, Iglesias L, Halperin I et al. Sorafenib in metastatic thyroid cancer. Endocr Relat Cancer 2012; 19: 209–216. doi: 10.1530/ERC-l 1–0351.
  63. Brose MS, Nutting CM, Jarzab B et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384:319–328. doi: 10.1016/S0140–6736(14)60421–9.
  64. Krajewska J, Olczyk T, Roskosz J et al. Treatment with sorafenib in advanced thyroid cancer – a case report. Endokrynol Pol 2010; 61:492–496.
  65. Massicotte MH, Brassard M, Claude-Desroches M et al. Tyrosine kinase inhibitor treatments in patients with metastatic thyroid carcinomas: a retrospective study of the TUTHYREF network. Eur J Endocrinol 2014; 170: 575–582. doi: 10.1530/EJE-13–0825.
  66. Brient C, Mucd S, Taieb D et al. Differentiated thyroid cancer with liver metastases: lessons learned from managing a series of 14 patients. Int Surg 2015; 100: 490–496. doi: 10.9738/INTSURG-D-14–00026.1.
  67. Phay JE, Ringel MD. Metastatic mechanisms in follicular cell-derived thyroid cancer. Endocr Relat Cancer 2013; 20: R307–319. doi: 10.1530/ERC-13–0187.
  68. Czarniecka A, Wloch J, Jarzab M et al. Clinical course and treatment of patients with differentiated thyroid carcinoma diagnosed during the year 1995. Endokrynol Pol 2005; 56: 758–765.
  69. Hundahl SA, Fleming ID, Fremgen AM et al. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see commetns]. Cancer 1998; 83: 2638–2648.
  70. Haq M, Harmer C. Differentiated thyroid carcinoma with distant metastases at presentation: prognostic factors and outcome. Clin Endocrinol (Oxf) 2005; 63: 87–93. doi: 10.1111/j.l365–2265.2005.02304.x.
  71. Shoup M, Stojadinovic A, Nissan A et al. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J Am Coll Surg 2003; 197: 191–197. doi: 10.1016/ S1072–7515(03)00332–6.
  72. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994; 97: 418–428.
  73. Pendergrast WJ, Milmore BK, Marcus SC. Thyroid cancer and thyrotoxicosis in the United States: their relation to endemic goiter. J Chronic Dis 1961; 13: 22–38.
  74. Lee J, Soh EY. Differentiated thyroid carcinoma presenting with distant metastasis at initial diagnosis clinical outcomes and prognostic factors. Ann Surg 2010; 251: 114–119. doi: 10.1097/SLA.0b013e3181b7faf6.
  75. Hong CM, Ahn BC, Jeong SY et al. Distant metastatic lesions in patients with differentiated thyroid carcinoma. Clinical implications of radioiodine and FDG uptake. Nuklearmedizin 2013; 52: 121–129. doi: 10.3413/Nukmed-0541–12–11.
  76. Alzahrani AS, Abouzied ME, Salam SA et al. The role of F-18-fluorodeoxyglucose positron emission tomography in the postoperative evaluation of differentiated thyroid cancer. Eur J Endocrinol 2008; 158: 683–689. doi: 10.1530/EJE-07–0903.
  77. Pace L, Klain M, Salvatore B et al. Prognostic role of 18F-FDG PET/CT in the postoperative evaluation of differentiated thyroid cancer patients. Clin Nucl Med 2015; 40:111–115. doi: 10.1097/RLU.00000000000 00621.
  78. Gaertner FC, Okamoto S, Shiga T et al. FDG PET Performed at Thyroid Remnant Ablation Has a Higher Predictive Value for Long-Term Survival of High-Risk Patients With Well-Differentiated Thyroid Cancer Than Radioiodine Uptake. Clin Nucl Med 2015; 40: 378–383. doi: 10.1097/RLU.0000000000000699.
  79. Tanriverdi O, Avd A, Yugunt I et al. A case report of breast and liver metastases of thyroid follicular cardnoma. J Cancer Res Ther 2015; 11: 652. doi: 10.4103/0973–1482.138003.
  80. Nayak SR, Soren DK, Mishra A et al. Occult follicular thyroid cardnoma presenting as chest wall swelling – a case report. The Internet Journal of Endocrinology 2013; 8.
  81. Chiofalo MG, Losito NS, Fuldniti F et al. Axillary node metastasis from differentiated thyroid cardnoma with Hurthle and signet ring cell differentiation. A case of disseminated thyroid cancer with peculiar histologic findings. BMC Cancer 2012; 12: 55. doi: 10.1186/1471–2407–12–55.
  82. Kouso H, Ikegami T, Ezaki T et al. Liver metastasis from thyroid carcinoma 32 years after resection of the primary tumor: report of a case. Surg Today 2005; 35: 480–482. doi: 10.1007/s00595–004–2949–4.
  83. Graves MW, Zukerberg B, Walace K et al. Isolated liver metastases from follicular thyroid cancer. Clin Nud Med 1996; 21: 147–148.
  84. Shah DH, Samuel AM. Metastasis to the liver in well-differentiated cardnoma of the thyroid. Thyroid 1996; 6: 607–611.

Polish version


Rak pęcherzykowy tarczycy (FTC, follicular thyroid carcinoma) stanowi około 10% nowotworów złośliwych tego gruczołu w regionach o dobrym zaopatrzeniu w jod oraz 25–40% raków tarczycy na obszarach niedoboru jodu [1, 2]. Rak pęcherzykowy tarczycy występuje zwykle między czwartą a szóstą dekadą życia, później niż rak brodawkowaty (występujący zazwyczaj między trzecią a piątą dekadą życia) [3]. Obserwuje się przewagę kobiet do mężczyzn w stosunku 3:1. Rak pęcherzykowy tarczycy jest nowotworem bardziej agresywnym i często w momencie diagnozy guz jest większy oraz częściej występują przerzuty odlegle w porównaniu z rakiem brodawkowatym tarczycy (PTC, papillary thyroid cancer) [4, 5].

Rak pęcherzykowy tarczycy w przeciwieństwie do PTC zazwyczaj daje przerzuty drogą naczyń krwionośnych. Przerzuty do narządów trzewnych są rzadkie i obecne u 10–15% pacjentów w momencie początkowej diagnozy. Guzy o średnicy mniejszej niż 2 cm zazwyczaj nie są związane z rozsiewem nowotworowym [6]. Rak pęcherzykowy tarczycy najczęściej daje przerzuty do kości i płuc, natomiast rzadkimi miejscami przerzutów są: mózg, nerki, pęcherz moczowy, wątroba, gruczoły sutkowe czy skóra [4, 7]. Przerzuty do wątroby stanowią 0,5% wszystkich przerzutów FTC, ale w badaniach autopsyjnych zajęcie wątroby jest rozpoznawane nawet w 25% przypadków [8, 9–11].

Do tej pory w literaturze opisano 30 przypadków FTC z przerzutami do wątroby (tab. I). Izolowane przerzuty FTC do wątroby są diagnozowane rzadko z częstością nie przekraczającą jednego procenta [8, 12]. Przerzuty do wątroby są najczęściej obecne, gdy dochodzi do rozsiewu nowotworowego z zajęciem wielu narządów, takich jak płuca, kości czy mózg [13–20]. W literaturze podaje się, że czas od rozpoznania raka tarczycy do ujawnienia się przerzutów sięga nawet do 32 lat [20, 21].

Tabela 1. Podsumowanie przeglądu literaturypacjenci z przerzutami raka pechęrzykowego tarczycy do wątroby

Liczba pacjentów Inne przerzuty Przerzuty do wątroby (pojedyncze/mnogie) Wychwyt I–131 w wątrobie Wychwyt FDG w wątrobie Leczenie przerzutów do wątroby Autorzy
6 NA NA NA NA TKI w 4 przypadkach (w 1 przypadku poprzedzona usunięciem guza przerzutowego) Brient i wsp. [66]
1 Kości, gruczoł sutkowy NA NA NA NA Tanriverdi i wsp. [79]
1 Kości Mnogie NA NA brak (rezygnacja pacjenta) Nayak i wsp. [80]
1 Kości, węzły chłonne Pojedyncze Niejasne NA I–131 Chiofalo i wsp. [81]
1 Kości Mnogie NA + + + RFA w połączeniu z embolizacją i I–131 Wertenbroek i wsp. [49]
1 Kości, nerki Mnogie + + + NA I–131 Faivre-Defrance i wsp. [21]
1 Kości Pojedyncze NA NA I–131 (brak zgody pacjenta na resekcję przerzutów do wątroby) Kelessis i wsp. [20]
1 Brak Pojedyncze NA NA Częściowa resekcja wątroby Kouso i wsp. [82]
1 Brak Pojedyncze + + + NA I–131 Kraft i wsp. [15]
1 Brak Pojedyncze NA NA Częściowa resekcja wątroby Kondo i wsp. [19]
1 Brak pojedyncze + + + NA przezskórna fotokoagulacja, I–131 Guglielmi i wsp. [18]
1 Brak Mnogie + + + NA NA Graves i wsp. [83]
9 Mnogie – węzły chłonne w 5 przypadkach, kości w 8 przypadkach, płuca w 4 przypadkach Pojedyncze w 6 przypadkach, mnogie w 3 przypadkach + + + w 8 przypadkach NA I–131 w 8 przypadkach, w tym w 5 w kombinacji z radioterapią; chemioterapia w 1 przypadku Shah i wsp. [84]
2 Kości, płuca w obu przypadkach NA + + + NA I–131 w obu przypadkach Atmaram i wsp. [36]
2 I – kości; II – płuca, śródpiersie NA + + + NA I–131 w obu przypadkach Woolfenden i wsp. [31]

NA – nie analizowano; TKI – inhibitor kinazy tyrozynowej; RFA – ablacja prądem o częstotliwości radiowej

Wysokozróżnicowany rak pęcherzykowy tarczycy charakteryzuje się intensywnym wychwytem jodu promieniotwórczego i dużą produkcją tyreoglobuliny [9, 20, 21]. Tyreotoksykoza w przypadku FTC zazwyczaj wynika z dużej objętości i liczby zmian przerzutowych, często obejmujących również przerzuty do kości [22, 23]. Częściej jest obserwowana w regionach ubogich w jod. Tyreotoksykozę opisali tylko w kilku przypadkach raka pęcherzykowego tarczycy z przerzutami do wątroby Gugliehme i wsp. oraz Kondo i wsp. [18, 19].

Badania obrazowe w odległych przerzutach raka pęcherzykowego tarczycy

Guzy wątroby zazwyczaj wykrywane są przypadkowo w trakcie badania ultrasonograficznego (USG) i/albo badania tomografii komputerowej (CT). Biopsja aspiracyjna cienkoigłowa (BAC) i gruboiglowa wątroby są wartościowymi narzędziami w ustalaniu ostatecznej diagnozy w przypadku zmian ogniskowych wątroby podejrzanych o charakter przerzutowy [24].

Zgodnie z ostatnimi wytycznymi Amerykańskiego Towarzystwa Badań Chorób Wątroby (American Association for the Study of Liver Disease) i Europejskiego Stowarzyszenia Badań nad Wątrobą (European Association for the Study of the Liver), w przypadku zmian patologicznych w wątrobie o wielkości powyżej 2 cm, nieinwazyjnej diagnostyce opartej na CT i rezonansie magnetycznym (MRI), powinno towarzyszyć przeprowadzenie biopsji wątroby. Biopsja wątroby może dać fałszywie negatywny wynik nawet w przypadku wykonania badań immunohistochemicznych [25]. Odsetek fałszywie negatywnych wyników sięga nawet 30% [26]. Jeśli zmiana patologiczna w wątrobie rośnie albo jej obraz się zmienia, rekomendowane jest wykonanie kolejnej biopsji [27].

Przezskórna BAC zmian w obrębie jamy brzusznej wykonywana pod kontrolą metod obrazowych jest stosowana w diagnostyce od ponad 30 lat [28, 29]. Biopsja aspiracyjna cienkoigłowa ma czułość wyższą niż 85% i specyficzność rzędu 100%. Dane literaturowe na temat biopsji przerzutów do wątroby raków wysokozróżnicowanych tarczycy są ograniczone. Warto pamiętać o tym, że przerzuty FTC do wątroby mogą naśladować cytologicznie raka wątrobowokomórkowego [30].

Po terapeutyczna scyntygrafia jodowa całego ciała i badanie SPECT (tomografii emisyjnej pojedynczych fotonów) są przydatnymi narzędziami w ocenie anatomicznej i metabolicznej zmian patologicznych. Wysoki wychwyt jodu promieniotwórczego w wątrobie i gromadzenie znacznika w obrębie przewodu pokarmowego nawet wiele godzin po podaniu dawki znacznika przysparzają trudności w różnicowaniu pomiędzy fizjologicznym i patologicznym wychwytem radiojodu. Konieczna jest dokładna ocena wątroby na obrazach scyntygraficznych, pozwalająca na rozróżnienie między rozproszonym i ogniskowym wychwytem radiojodu w wątrobie. Ogniskowa akumulacja znacznika jest typowa dla przerzutów raka tarczycy do wątroby z zachowaną syntezą hormonów [15]. Przerzuty raka pęcherzykowego tarczycy są zazwyczaj dobrze zróżnicowane, jednakże przerzuty do wątroby przeważnie nie wychwytują jodu promieniotwórczego. Wskazywać to może na odróżnicowywanie się nowotworu w przypadku powstawania tych przerzutów. Funkcjonalne (wychwytujące radiojod) przerzuty do wątroby z raka pęcherzykowego tarczycy są rzadkie [8, 31, 32]. Fałszywie pozytywne ogniskowe gromadzenie znacznika w obrębie wątroby stwierdzane w scyntygrafiach poterapeutycznych było opisywane w literaturze, na przykład w przypadku ropni wątroby [33]. Stokkel i wsp. opisywali dużą wartość diagnostyczną scyntygrafii z In-11-oktreotydem u pacjentów z rozsianym rakiem zróżnicowanym tarczycy i negatywnymi scyntygrafiami po terapii 131–I, którzy nie odpowiadali na leczenie radiojodem [34]. Scyntygrafia poterapuetyczna po leczeniu jodem promieniotwórczym może stanowić precyzyjne i czułe narzędzie do poszukiwania przerzutów funkcjonalnych [34]. Rozlany wychwyt w wątrobie widoczny w scyntygrafiach całego ciała jest zależny od ilości podanego radiojodu oraz zdolności wątroby do jego wychwytu [32], Ogniskowy wychwyt znacznika jest typowo obserwowany w funkcjonalnych przerzutach raka zróżnicowanego tarczycy do wątroby, podczas gdy rozlany wątrobowy wychwyt był opisywany nawet u 44% pacjentów bez przerzutów do wątroby po terapii radiojodem [31, 32, 35, 36, 37].

Wątroba jest ważnym organem metabolizującym hormony tarczycy, reguluje stężenie tyroksyny (T4), odpowiada za jej dejodynację (w 40%) i za produkcję trijodotyroniny (T3) w 70% [38]. Do akumulacji znakowanych radioaktywnie hormonów tarczycy w wątrobie dochodzi w przypadku chorych z chorobą przerzutową, kiedy tyreoglobulina (Tg) jest uwalniana z czynnej tkanki guza i metabolizowana oraz absorbowana przez wątrobę. Stan hormonalny tarczycy, leki, stres, infekcje i poważne choroby towarzyszące mogą zmienić metabolizm T4 i jej wychwyt wątrobowy. Także niespecyficzne jodowane białka surowicy mogą być odpowiedzialne za uwidocznienie wątroby podczas scyntygrafii [32, 37].

Przewaga wartości diagnostycznej SPECT nad obrazowaniem planarnym jest nie do przecenienia. Wyniki SPECT mogą zmodyfikować postępowanie nawet w 25–50% przypadków [39, 40]. Czułość SPECT w identyfikacji wychwytu radiojodu w płucach, wątrobie i kościach jest znacznie lepsza niż badań planarnych u pacjentów po operacjach chirurgicznych. SPECT pozwala uniknąć konieczności zastosowania dodatkowych metod obrazowania, pozwala na zmianę postępowania w tym wskazań do kontroli, jeśli to konieczne [41].

W przypadku niskiego wychwytu radiojodu bądź braku jego wychwytu, zastosowanie badania pozytronowej tomografii emisyjnej (PET, positron emission tomography) z użyciem 18-fluorodeoksyglukozy (18-FDG) jest rekomendowane ze względu na jego diagnostyczne i prognostyczne znaczenie. Pozytronowa tomografia emisyjna stanowi drogie aczkolwiek efektywne narzędzie w różnicowaniu pacjentów z rozsianym rakiem zróżnicowanym tarczycy na dwie grupy: o niskim (FDG negatywny) i wysokim (FDG pozytywny) ryzyku śmiertelności według Robinnsa i wsp. [42]. Wiek powyżej 45 lat w czasie badania PET, wartość wystandaryzowanego maksymalnego wychwytu znacznika (SUV max), obecność odległych przerzutów, obszar wzmożonej FDG-aktywności stanowią silne prognostyczne wykładniki przeżywalności [44]. Elong i wsp. także znaleźli odwrotną korelację pomiędzy obecnością wychwytu FDG, SUV max i przeżywał ilością pacjentów z rakiem zróżnicowanym tarczycy [45]. Scyntygrafia i PET stanowią metody obrazowe pozwalające także na ocenę stanu funkcjonalnego przerzutów raka tarczycy.

Leczenie odległych przerzutów raka pęcherzykowego tarczycy

Właściwe leczenie choroby przerzutowej jest kluczowe dla dalszego przeżycia i prognozy. Jeśli to możliwe, wycięcie zmian przerzutowych, terapia L-tyroksyną w dawce supresyjnej oraz leczenie radiojodem w przypadku przerzutów go gromadzących jest zasadniczym postępowaniem. Terapia radiojodem jest stosowana celem ablacji resztek tarczycy po zabiegu oraz jako terapia adjuwantowa. Przerzuty raka pęcherzykowego tarczycy gromadzą radiojod w 75% przypadków [46]. W przypadku przerzutów odległych, szczególnie tych powyżej 1 cm i zlokalizowanych w kościach, sądzi się, że terapia radiojodem jest mniej efektywna [47].

Pojedynczy, resekowalny przerzut do wątroby raka zróżnicowanego tarczycy występuje rzadko. Jeśli występuje, powinna zostać rozważona chirurgiczna resekcja, a szczególnie anatomiczna segmentalna resekcja wątroby, która daje duże nadzieje na długie przeżycie pacjenta [17, 48].

Ablacja prądem o częstotliwości fal radiowych (RFA, radiofreąuency ablation) jest metodą stosowaną w przypadku wielu typów guzów wątroby, również podczas paliatywnego leczenia przerzutów raka tarczycy [49]. Ablacja może być wykonana drogą przezskórną bądź drogą laparotomii. Ablacja prądem o częstotliwości fal radiowych powinna być rozważona jako technika cytoredukcyjna zwiększająca efektywność terapii jodem promieniotwórczym także u pacjentów z przerzutami, które cechuje brak lub niski wychwyt radiojodu [49, 50]. W przypadku zmian większych niż 5 cm, RFA jest mniej efektywna [49]. W literaturze opisano dwa przypadki zastosowania RFA w przypadku przerzutów do wątroby raka rdzeniastego tarczycy oraz jeden raka pęcherzykowego tarczycy [18, 49]. Lokalnego nawrotu przerzutów poddanych ablacji nie odnotowano w okresie obserwacji [49]. Skuteczność i bezpieczeństwo terapii izotopem jodu może poprawić wstępna przezskórna fotokoagulacja w przypadku funkcjonalnych, nieresekcyjnych przerzutów do wątroby raka zróżnicowanego tarczycy [18].

Embolizacja przeztętnicza (TAE, transarterial embolization) jest dodatkową opcją leczenia przerzutów do wątroby [51, 52]. Embolizacja przeztętnicza jest używana z dobrymi efektami w leczeniu raka wątrobowokomórkowego oraz przerzutów do wątroby nowotworów przewodu pokarmowego czy guzów neuroendokrynnych [53–55]. W literaturze opisano dotychczas jeden przypadek pacjenta z rakiem pęcherzykowym tarczycy i przerzutami do wątroby, leczonym TAE, RFA i izotopem jodu I–131, który przeżył tylko sześć miesięcy [49]. Istnieją pozytywne doniesienia na temat przeztętniczej chemoembolizacji, stanowiącej połączenie TAE i chemioterapii, w leczeniu przerzutów do wątroby raka rdzeniastego tarczycy. Zgodnie z tymi doniesieniami, przy zastosowaniu tej opcji terapeutycznej, radiologiczna odpowiedź częściowa sięgała 42%, natomiast stabilizacja przerzutów została odnotowana w 42–60% przypadków [56, 57].

Chemioterapia z użyciem cisplatyny i doksyrubicyny jest kolejną opcją leczniczą w przypadku opornych na leczenie izotopowe, nieresekcyjnych przerzutów [58]. W sytuacji braku odpowiedzi na leczenie dużymi dawkami izotopu jodu, terapia z zastosowaniem analogu somatostatyny, oktreotydu, znakowanego izotopem indu 111In, jest kolejną możliwością terapeutyczną [59].

Leczenie z użyciem inhibitorów kinazy tyrozynowej (TKI, tyrosine kinase inhibitors) niesie duże nadzieje i oczekiwania w terapii rozsianego raka tarczycy. Zdolność sorafenibu do hamowania angiogenezy i blokowania kilku kinaz białkowych, w szczególności BRAF-1, RET, VEGFR, PDGFRA, czy c-KIT, popchnęła naukowców do prowadzenia badań klinicznych II i III fazy, włączając także pacjentów z rakiem tarczycy [60, 61]. Sorafenib w formie doustnych tabletek został dopuszczony do leczenia przez Agencję Żywności i Leków (FDA, Food and Drug Administration) w przypadku zaawansowanego rozsianego raka zróżnicowanego tarczycy w 2013 roku. Jego skuteczność jest różnie oceniana w zależności od badania klinicznego. Odsetek częściowych odpowiedzi sięga 6-49% [62]. W niedawno przeprowadzonym dużym badaniu klinicznym, okres przeżycia bez postępu choroby (PFS, progression-free survival) sięgał 10,8% w przypadku opornych na leczenie zróżnicowanych raków tarczycy (w porównaniu z PFS 5,8% w grupie otrzymującej placebo) [63]. Pokrzywka, biegunka i zespól dłoniowo-podeszwowy/ręka-stopa były najczęstszymi działaniami niepożądanymi leczenia sorafenibem [60–63]. Sześciu pacjentów z rakiem zróżnicowanym tarczycy i przerzutami do wątroby, leczonych inhibitorami kinazy tyrozynowej (sorafenibem, sunitibem) poza badaniami klinicznymi, włączono do badania retrospektywnego sieci TUTHYREF (Tumeurs de la Thyroïde Réfractaires Network). Najlepiej odpowiadającymi na leczenie przerzutami raka zróżnicowanego tarczycy były kolejno: przerzuty do płuc (odpowiedź zaobserwowano w 22%) i do wątroby (odpowiedź zaobserwowano w 18%). Przerzuty do kości i opłucnej okazały się najbardziej oporne na ten rodzaj leczenia. Okres przeżycia bez postępu choroby pacjentów z rozsianym zróżnicowanym rakiem tarczycy sięgał 7,2–19,8 miesięcy we wcześniejszych badaniach [60, 61, 63, 65]. Brient i wsp. opisali ponadto ośmiu pacjentów z rakiem zróżnicowanym tarczycy i przerzutami do wątroby (w tym 4 przypadki raka pęcherzykowego tarczycy) leczonych TKI. W ich pracy mediana przeżycia po diagnozie przerzutów raka tarczycy do wątroby była znacząco dłuższa u pacjentów leczonych TKI w porównaniu z pacjentami, którzy nie otrzymali takiej terapii (23,6 vs. 3,9 miesięcy, p < 0,001). W tym badaniu wykluczono pacjentów z zajęciem obu piatów wątroby [66]. Mechanizm rozwoju oporności raka tarczycy na leczenie TKI wdąż jest badany. Mogłoby go wyjaśniać pojawienie się tak zwanego stanu „uśpienia” przerzutów [67]. Podsumowując, aktywność i skuteczność sorafenibu była testowana w relatywnie malej grupie chorych z rozsianym rakiem zróżnicowanym tarczycy, zatem jego skuteczność w FTC z niejodochwytnymi przerzutami do wątroby nie została dobrze udokumentowana.

Prognoza w przypadku pacjentów z rakiem pęcherzykowym tarczycy i przerzutami odległymi

Rak pęcherzykowy tarczycy ma zwykle dobrą prognozę, jednak obecność przerzutów odległych znacznie ją pogarsza [68]. W dużym badaniu Hundah i wsp. 10-letni względny odsetek przeżycia chorych z FTC wynosił około 85% [69]. W innym badaniu autorstwa Verbürg i wsp. 20-letni odsetek przeżycia specyficznego dla FTC wyniósł 73,7% [5]. U pacjentów z rakiem pęcherzykowym tarczycy bez przerzutów odległych 20-letni odsetek przeżycia specyficznego dla tej choroby sięgał 80,2% i odsetek ten był znacząco niższy niż w przypadku raka brodawkowatego tarczycy bez przerzutów (93,1%) [5, 70].

Prognoza u pacjentów z przerzutami do wątroby raka pęcherzykowego tarczycy jest niekorzystna [11]. Oprócz umiejscowienia istnieją inne cechy przerzutów, które mogą być czynnikami prognostycznymi. Występowanie w wieku powyżej 45 lat, zajęcie wielu innych organów, duża objętość przerzutów są niezależnymi złymi czynnikami rokowniczymi u pacjentów z rakiem tarczycy [71]. Zazwyczaj FTC u pacjentów powyżej 40. roku życia jest bardziej agresywny i rzadziej odpowiada na terapię radiojodem [7, 72]. Zgodnie z doniesieniami literaturowymi, kobiety mają na ogól lepszą prognozę niż mężczyźni [7].

Wpływ suplementacji jodem na umieralność pacjentów z rakiem pęcherzykowym tarczycy jest niejasny [73]. Rak zróżnicowany tarczycy z przerzutami odległymi w momencie diagnozy ma mieć korzystniejszy przebieg w porównaniu z rakiem tarczycy, w którym przerzuty odlegle rozwijają się po wstępnym leczeniu [74]. Jodochwytność przerzutów ma zasadniczy wpływ na okres przeżycia swoistego dla choroby (DSS, disease-specific survival) [74]. Pacjenci z wychwytującymi 131–I i odpowiadającymi na terapię radiojodem przerzutami raka zróżnicowanego tarczycy cechują się 10-letnim odsetkiem przeżycia rzędu 90%, podczas gdy pacjenci z nieuwidaczniającymi się na scyntygrafii 131–I, opornymi na leczenie radiojodem przerzutami charakteryzują się 10-letnim odsetkiem przeżycia rzędu 10% [50]. Jakkolwiek Robbins i wsp. opisali, że chorzy z gromadzeniem znacznika w badaniach scyntygraficznych mają znacząco gorszą prognozę [42]. Podobnie w innym badaniu autorstwa Honga i wsp. gromadzenie radiojodu w zmianach przerzutowych korelowało ze skróceniem specyficznego dla nowotworu przeżycia [75].

Jak wspomniano wcześniej, wykazano, że brak aktywności 18F-FDG w przerzutach odległych raka zróżnicowanego tarczycy jest korzystny dla dalszej prognozy [43, 75, 76]. W pooperacyjnej ocenie nowotworów zróżnicowanych tarczycy, PET z użyciem 18F-FDG stanowi czule narzędzie w diagnozowaniu przerzutów odległych, jednakże negatywny wynik badania PET nie wyklucza istnienia niefunkcjonalnych, przerzutowych zmian. Wyniki badania FDG-PET korelują ze stadium choroby, PFS i długoterminowym wynikiem leczenia [42, 76, 77]. Badanie FDG-PET wykonane nawet przed tyreoidektomią jest uważane za wysokiej wartości predyktor długoletniego przeżycia w grupie pacjentów wysokiego ryzyka z rakiem zróżnicowanym tarczycy [76].


Z powodu ryzyka nawrotu i pojawienia się przerzutów, uważny nadzór nad pacjentami z rakiem pęcherzykowym tarczycy powinien być prowadzony rutynowo. Metody wykrywania przerzutów odległych oprócz badania stężenia tyreoglobuliny powinny obejmować techniki obrazowe o wysokiej czułości. Badanie ultrasonograficzne, scyntygrafia całego ciała 1–131 oraz badanie tomografii emisyjnej pojedynczych fotonów (SPECT-CT, single-photon emission computed tomography) stanowią standardowe metody używane w monitorowaniu pacjentów z rakiem zróżnicowanym tarczycy. Badanie CT oraz PET stanowią dodatkowe, wspomagające metody o dużej wartości diagnostycznej, szczególnie w przypadku przerzutów niegromadzących radiojodu. SPECT-CT oraz PET-CT są badaniami o dużej skuteczności w wykrywaniu rozsiewu nowotworowego w raku tarczycy, podczas gdy FDG-PET może nie ujawnić wszystkich przerzutów raka tarczycy. Tomografia komputerowa w kombinacji z biopsją mogą stanowić lepsze, tańsze narzędzie diagnostyczne, jednakże wynik PET zdaje się mieć ważne znaczenie predykcyjne. Kiedy u pacjenta z rakiem tarczycy zostaną zdiagnozowane przerzuty odlegle, FDG-PET pomaga zidentyfikować pacjentów o wysokim i niskim ryzyku śmiertelności.

Z powodu rzadkości pacjentów z przerzutami do wątroby raka pęcherzykowego tarczycy, dane dotyczące prognozy i obserwacji tej grupy pacjentów są ograniczone. Ustalenie algorytmów postępowania z rzadkim narządowymi przerzutami zróżnicowanego raka tarczycy, w szczególności w przypadku przerzutów nieresekcyjnych wydaje się być niezbędne. Zebranie większej liczby danych na temat rzadkich przerzutów raka pęcherzykowego tarczycy pomoże osiągnąć lepsze wyniki, zarówno w zakresie diagnostyki, jaki i leczenia tej grupy pacjentów.

Pacjentka z przerzutami raka pęcherzykowego tarczycy do wątroby – opis przypadku

Pacjentkę w wieku 67 lat skierowano do Poradni Endokrynologicznej w lutym 2013 roku w celu kontroli z powodu nadczynności tarczycy, leczonej 2-krotnie radiojodem około 20 lat wcześniej. Dodatkowo pacjentka była leczona z powodu nadciśnienia tętniczego i skarżyła się na nawracające infekcje górnych dróg oddechowych. Pacjentka nie chorowała wcześniej na cukrzycę, choroby sercowo-krążeniowe, choroby płuc czy nerek. Badanie ultrasonograficzne tarczycy ujawniło zmianę ogniskową w prawym piacie tarczycy o wielkości 20 × 20 mm. Wykonano biopsję aspiracyjną cienkoigłową celowaną (BACC) zmiany, a wynik badania cytologicznego wskazał na obecność komórek nowotworowych, prawdopodobnie komórek raka brodawkowatego tarczycy. W czasie badania chora znajdowała się w stadium eutyreozy. Pacjentkę skierowano na oddział chirurgiczny, gdzie w kwietniu 2013 roku poddano całkowitemu usunięciu tarczycy z centralną limfadenektomią. W ostatecznym badaniu histopatologicznym rozpoznano raka pęcherzykowego tarczycy w stadium pT2N0 z mikroinwazją naczyń (maksymalna średnica guza 21 mm; wyniki badań inununohistochemicznych: kalcytonina – negatywna, tyreoglobulina – pozytywna) (ryc. 1 A-C). We wrześniu 2013 roku chorą przyjęto na oddział endokrynologiczny celem diagnostyki i ablacji z użyciem radiojodu. Pacjentka otrzymała 142 mCi (5,3 GBq) 131–1 w warunkach endogennej stymulacji TSH (tyreoglobulina – Tg > 1000 ng/ml, przeciwciała przeciwko tyreoglobulinie (aTg) > 4000 IU/ml). Wynik badania rentgenowskiego klatki piersiowej był prawidłowy. Badanie ultrasonograficzne tarczycy ujawniło niewielkie resztki piatów tarczycy. Na scyntygrafii poterapeutycznej całego ciała (Infinia Hawkeye Gammakamera; GE Healthcare) uwidoczniono dwuogniskowy wychwyt w loży tarczycy i niespecyficzny rozlany wychwyt w obrębie wątroby. W dodatkowo wykonanym badaniu SPECT-CT zdiagnozowano ponadto tylko chorobę zwyrodnieniową kręgosłupa. Po leczeniu izotopowym pacjentka otrzymała supresyjną dawkę lewotyroksyny (LT4).

Rycina 1. Guz pierwotny (A, B) otorebkowana masa guza naciekająca torebkę (HE, 20×); (C) guz pierwotny z inwazją naczyń torebki (HE, 40×); guz wtórny, przerzut do wątroby (D) cytologiczne szczegóły morfologii komórek wskazują na prawdopodobne pochodzenie przerzutu z raka pęcherzykowego tarczycy (HE, 40×); badania immunohistochemiczne potwierdzające typ różnicowania nowotworu; (E) przerzut do wątroby – tyreoglobulina (+) reakcja cytoplazmatyczna; (F) przerzut do wątroby – TTF1 (+) reakcja jądrowa. Pozostałe oznaczone, ujemne markery immunohistochemiczne: Cytokeratyna 7(+/-), Cytokeratyna 19 (-), HEPPAR (-), CEA (-), AFP (-)

Pacjentka zgłosiła się do lekarza rodzinnego w grudniu 2013 roku z powodu bólów brzucha. W badaniach laboratoryjnych z odchyleń odnotowano podwyższony wskaźnik OB (19 mm, wartość referencyjna < 16) i podwyższone stężenie ganuna-glutamylotranspeptydazy (73 U/I, wartość referencyjna < 40). Stężenia bilirubiny fosfatazy zasadowej (ALP), aminotransferazy alaninowej (ALT) i aspargainowej (AST) pozostawały w granicach wartości referencyjnych. Badanie ultrasonograficzne jamy brzusznej ujawniło znacznie powiększoną wątrobę o heterogenicznej echogenności. Prawy płat wątroby był prawie całkowicie wypełniony przez litą masę o połimorficznej strukturze i nierównych granicach. W lewym płacie wątroby uwidoczniono zmianę litą wielkości 90 × 80 mm i torbiel wielkości 23 mm.

Pacjentkę skierowano do Wielkopolskiego Centrum Onkologii (WCO) celem dalszej diagnostyki. Wykonano badanie wirtualnej kolonoskopii (kolonoskopii CT), które nie ujawniło patologii w obrębie jelit, natomiast w wątrobie opisano liczne zmiany: dwa duże guzy o średnicy 100 mm (segment 3) i 145 mm (segment 5/6) (oraz cztery mniejsze zmiany o wymiarach: 30 mm (segment 2/3), 17 mm (segment 7), 14 mm (segment 4), 12 mm (segment 1). Zmiany te opisano jako masywne przerzuty lub rak wątrobowokomórkowy. Dodatkowo zobrazowano bogatolipidowy gruczolak nadnercza lewego (18 mm średnicy) oraz podopłucnowy guzek (7 mm) w lewym płucu. Poziomy markerów nowotworowych (CEA, alfafetoproteiny, CA-125, CA-15.3, CA-19.9) były w normie. Wykonano BAC wątroby pod kontrolą CT dwa dni po wirtualnej kolonoskopii. Wynik badania cytologicznego potwierdził pochodzenie przerzutów do wątroby z raka tarczycy: Ki-67 1%, tyreoglobulina (+), TTF-1 (+), HEPPAR (-), cytokeratyna 7 (+/-), cytokeratyna 19 (-), CEAp (-), AFP (-), CD34 (-) (ryc. 1D-F).

W lutym 2014 roku chora ponownie przyjęta na oddział endokrynologiczny celem kontroli obrazowej i biochemicznej. Pacjentka skarżyła się na dyskomfort w obrębie jamy brzusznej i wzdęcia. Stężenie tyreoglobuliny wynosiło powyżej 50 000 ng/ml, a stężenie przeciwciał przeciwko tyreoglobulinie 2721 IU/ml (norma < 60). Badanie CT klatki piersiowej uwidoczniło niewielkie guzki płuc o nieznanym pochodzeniu i wielkości do 8 mm. W badaniu CT jamy brzusznej opisano trzy duże guzy wątroby (o średnicy: 93 mm, 153 mm i 17 mm) oraz kilka mniejszych.

Badanie PET/CT (PET/CT – skaner Discovery ST, GE Healthcare) wykonane w lutym 2014 roku ukazało dwie duże masy w obrębie wątroby o nieznacznej, brzeżnej akumulacji 18F-FDG (SUXmax 2,9 vs. 2,4 normalnego miąższu wątroby) (ryc. 2A, B). Uwidoczniono także dwa guzki płucne o średnicy 5 i 7 mm, ale bez gromadzenia znacznika. W lewym nadnerczu opisano łagodny guz o średnicy 16 mm bez akumulacji 18F-FDG.

Rycina 2. (A, B) Badanie PET/CTz użyciem 18F-fludeoksyglukozy (18F-FDG) pokazujące tylko nieznaczną akumulację znacznika na obrzeżu dużych mas w wątrobie. Ukazana aktyionośćjest tylko nieznacznie wyższa od fizjologicznej aktywności tkanki wątrobowej. Brok akumulacji 18F-FDG w centralnych hipodensyjnych obszarach zmian patolgicznych wskazujący na centralną martwicę w ogniskach przerzutowych. Brak ogniskowego wychwytu w pozostałych narządach

Pacjentka otrzymała 144 mCi (5,3 GBq) radiojodu w maju 2014 roku w warunkach egzogennej stymulacji rekombinowanym ludzkim TSH (rhTSH, Thyrogen, Genzyme). Umiarkowany rozlany wychwyt znacznika w dolnej części prawego płata wątroby został uwidoczniony w scyntygrafii poterapeutycznej całego ciała (I–131) (ryc. 3). Kolejne badanie CT jamy brzusznej w lipcu 2014 roku pokazało progresję wielkości przerzutów do wątroby (113 × 92 mm i 35 mm w segmencie 2/3, 190 × 130 × 190 mm w prawym płacie) (ryc. 4). W badaniu USG Doppler wykazano zespól ucisku żyły głównej dolnej bez obajwów zakrzepicy. Ponieważ doszło do progresji choroby, a przerzuty nie wykazywały jodochwytności, rozważano transplantację wątroby. Z powodu wieku pacjentki (powyżej 65 rż.) i wysokiego ryzyka nawrotu choroby pacjentki nie zakwalifikowano do tego rodzaju leczenia. Pacjentkę włączono do programu leczenia sorafenibem (Nexavar, w dawce 800 mg dziennie) w grudniu 2014 roku. Pacjentka pozostaje pod ścisłą kontrolą po dzień dzisiejszy.

Rycina 3. Scyntygrafia poterapeutyczna całego ciała I–131 po drugiej dawce jodu promieniotwórczego (144 md) ukazująca umiarkowany wychwyt znacznika w dolnej części prawego płata wątroby


Rycina 4. Wielorzędowa tomografia komputerowa wątroby z dożylnym podaniem jodowego środka kontrastującego – faza tętnicza. Zmiany przerzutowe w lewym i prawym płacie wątroby. Hiperdensyjna zmiana w fazie tętniczej, z patologicznymi naczyniami w obrębie guza. Projekcja MIP obrazy czołowe

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl