Online first
Review paper
Published online: 2024-11-26

open access

Page views 67
Article views/downloads 68
Get Citation

Connect on Social Media

Connect on Social Media

Novel radiopharmaceuticals in endocrinology: a comprehensive review

Mateusz Pocięgiel1, Tomasz Saniewski1, Kamil Wrzosek1, Piotr Opyd1, Edward Franek2, Michał Lis32

Abstract

Endocrinology is the study of hormones and the endocrine glands that are responsible for maintaining homeostasis in the human body.

Recently, there has been a surge of interest in the development of novel radiopharmaceuticals for diagnostic and therapeutic purposes in endocrinology. This comprehensive review explores the latest advances in novel radiopharmaceuticals with applications in the diagnosis and treatment of different endocrine disorders, including thyroid, adrenal, and pituitary disorders, as well as neuroendocrine tumours.

The article discusses innovative approaches that leverage the decay characteristics of radioisotopes to enhance the accuracy of diagnostic imaging and the therapeutic capability of targeted interventions. It covers the fundamental principles underlying radiopharmaceutical design, synthesis, and imaging modalities, as well as the mechanisms that drive their efficacy in endocrine applications. Furthermore,
the clinical implications of these novel radiopharmaceuticals are explored, along with their role in early detection, precise localisation, and personalised treatment strategies. Case studies and clinical trials are cited to highlight the practical utility and potential transformative impact of these advancements in the management of endocrine diseases. This review also notes current challenges, ongoing research and development, and future directions in the field. By providing a comprehensive overview of the evolving landscape of radiopharmaceuticals in endocrinology, this article aims to contribute to the collective knowledge base and foster a deeper understanding of the potential benefits and implications of these innovative technologies for both clinicians and researchers in the field of endocrine health.

Article available in PDF format

View PDF Download PDF file

References

  1. Căpraru O. Nuclear Endocrinology. Acta Endocrinologica (Bucharest). 2017; 13(3): 388–388.
  2. Reubi J. Peptide Receptors as Molecular Targets for Cancer Diagnosis and Therapy. Endoc Rev. 2016; 24(4): 389–427.
  3. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [1111n-DTPA-D-Phel]-and [1231-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993; 20(8): 716–731.
  4. Kos-Kudła B, Rosiek V, Borowska M, et al. Pancreatic neuroendocrine neoplasms — update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 491–548.
  5. Wild D, Fani M, Fischer R, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014; 55(8): 1248–1252.
  6. Starzyńska T, Londzin-Olesik M, Bednarczuk T, et al. Colorectal neuroendocrine neoplasms — update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 584–611.
  7. Ambrosini V, Fani M, Fanti S, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011; 52 Suppl 2: 42S–55S.
  8. Vorster M, Maes A, Wiele Cv, et al. Gallium-68 PET: A Powerful Generator-based Alternative to Infection and Inflammation Imaging. Semin Nucl Med. 2016; 46(5): 436–447.
  9. Bednarczuk T, Zemczak A, Bolanowski M, et al. Neuroendocrine neoplasms of the small intestine and the appendix — Update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 549–583.
  10. Pijarowska-Kruszyna J, Pocięgiel M, Mikołajczak R. Radionuclide generators. Nuclear Med Mol Imag. 2022; 1–4: 66–78.
  11. Strowski M, Blake A. Function and expression of somatostatin receptors of the endocrine pancreas. Mol Cell Endocrinol. 2008; 286(1–2): 169–179.
  12. Service FJ, McMahon MM, O'Brien PC, et al. Functioning insulinoma--incidence, recurrence, and long-term survival of patients: a 60-year study. Mayo Clin Proc. 1991; 66(7): 711–719.
  13. Jaïs P, Terris B, Ruszniewski P, et al. Somatostatin receptor subtype gene expression in human endocrine gastroentero-pancreatic tumours. Eur J Clin Invest. 1997; 27(8): 639–644.
  14. Kaltsas G, Mukherjee JJ, Plowman PN, et al. The role of chemotherapy in the nonsurgical management of malignant neuroendocrine tumours. Clin Endocrinol (Oxf). 2001; 55(5): 575–587.
  15. Oda Y, Tanaka Y, Naruse T, et al. Expression of somatostatin receptor and effects of somatostatin analog on pancreatic endocrine tumors. Surg Today. 2002; 32(8): 690–694.
  16. Virgolini I, Ambrosini V, Bomanji JB, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010; 37(10): 2004–2010.
  17. Stack BC, Twining C, Rastatter J, et al. Consensus Statement by the American Association of Clinical Endocrinology (AACE) and the American Head and Neck Society Endocrine Surgery Section (AHNS) on Pediatric Benign and Malignant Thyroid Surgery. Endocr Pract. 2021; 27(3): 174–184.
  18. Hofman MS, Lawrentschuk N, Francis RJ, et al. proPSMA Study Group Collaborators. A prospective randomized multicentre study of the impact of gallium-68 prostate-specific membrane antigen (PSMA) PET/CT imaging for staging high-risk prostate cancer prior to curative-intent surgery or radiotherapy (proPSMA study): clinical trial protocol. BJU Int. 2018; 122(5): 783–793.
  19. Wächter S, Di Fazio P, Maurer E, et al. Prostate-Specific Membrane Antigen in Anaplastic and Poorly Differentiated Thyroid Cancer-A New Diagnostic and Therapeutic Target? Cancers (Basel). 2021; 13(22).
  20. Bois F, Noirot C, Dietemann S, et al. Original Article [68 Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review. Am J Nucl Med Mol Imaging. 2020; 10(6): 349–374.
  21. Singh D, Arya A, Agarwal A, et al. Role of Ga-68 DOTANOC Positron Emission Tomography/ Computed Tomography Scan in Clinical Management of Patients with Neuroendocrine Tumors and its Correlation with Conventional Imaging- Experience in a Tertiary Care Center in India. Indian J Nucl Med. 2022; 37(1): 29–36.
  22. Ambrosini V, Campana D, Polverari G, et al. Prognostic Value of 68Ga-DOTANOC PET/CT SUVmax in Patients with Neuroendocrine Tumors of the Pancreas. J Nucl Med. 2015; 56(12): 1843–1848.
  23. Antunes P, Ginj M, Zhang H, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007; 34(7): 982–993.
  24. Haidar M, Shamseddine A, Panagiotidis E, et al. The role of 68Ga-DOTA-NOC PET/CT in evaluating neuroendocrine tumors: real-world experience from two large neuroendocrine tumor centers. Nucl Med Commun. 2017; 38(2): 170–177.
  25. Kwekkeboom DJ, Krenning EP, Lebtahi R, et al. Mallorca Consensus Conference participants, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology. 2009; 90(2): 220–226.
  26. Weber M, Telli T, Kersting D, et al. Prognostic Implications of PET-Derived Tumor Volume and Uptake in Patients with Neuroendocrine Tumors. Cancers (Basel). 2023; 15(14).
  27. Rep S, Hocevar M, Vaupotic J, et al. F-choline PET/CT for parathyroid scintigraphy: significantly lower radiation exposure of patients in comparison to conventional nuclear medicine imaging approaches. J Radiol Prot. 2018; 38(1): 343–356.
  28. Ouvrard E, Mestier LDe, Boursier C, et al. F-DOPA PET/CT at the Forefront of Initial or Presurgical Evaluation of Small-Intestine Neuroendocrine Tumors. J Nucl Med. 2022; 63(12): 1865–1870.
  29. Nanni C, Rubello D, Fanti S. 18F-DOPA PET/CT and neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2006; 33(5): 509–513.
  30. Imperiale A, Sebag F, Vix M, et al. 18F-FDOPA PET/CT imaging of insulinoma revisited. Eur J Nucl Med Mol Imaging. 2015; 42(3): 409–418.
  31. Archier A, Varoquaux A, Garrigue P, et al. Prospective comparison of (68)Ga-DOTATATE and (18)F-FDOPA PET/CT in patients with various pheochromocytomas and paragangliomas with emphasis on sporadic cases. Eur J Nucl Med Mol Imaging. 2016; 43(7): 1248–1257.
  32. Jansen TJP, van Lith SAM, Boss M, et al. Exendin-4 analogs in insulinoma theranostics. J Labelled Comp Radiopharm. 2019; 62(10): 656–672.
  33. Boss M, Buitinga M, Jansen T, et al. PET-Based Human Dosimetry of 68Ga-NODAGA-Exendin-4, a Tracer for β-Cell Imaging. J Nucl Med. 2019; 61(1): 112–116.
  34. Kaeppeli SAM, Schibli R, Mindt TL, et al. Comparison of desferrioxamine and NODAGA for the gallium-68 labeling of exendin-4. EJNMMI Radiopharm Chem. 2019; 4(1): 9.
  35. Pallavi UN, Malasani V, Sen I, et al. Molecular Imaging to the Surgeons Rescue: Gallium-68 DOTA-Exendin-4 Positron Emission Tomography-Computed Tomography in Pre-operative Localization of Insulinomas. Indian J Nucl Med. 2019; 34(1): 14–18.
  36. IAEA. Technetium-99m Radiopharmaceuticals: Status and Trends. Vienna; 2009. http://www.iaea.org/Publications/index.html.
  37. Saggiorato E, Angusti T, Rosas R, et al. 99mTc-MIBI Imaging in the presurgical characterization of thyroid follicular neoplasms: relationship to multidrug resistance protein expression. J Nucl Med. 2009; 50(11): 1785–1793.
  38. Krausz Y, Bettman L, Guralnik L, et al. Technetium-99m-MIBI SPECT/CT in primary hyperparathyroidism. World J Surg. 2006; 30(1): 76–83.
  39. Petranović Ovčariček P, Giovanella L, Carrió Gasset I, et al. The EANM practice guidelines for parathyroid imaging. Eur J Nucl Med Mol Imaging. 2021; 48(9): 2801–2822.
  40. Mi Y, Huang J, Ren Y, et al. Incidental Detection of Adrenal Pheochromocytoma on 99mTc-DTPA Renal Dynamic Scintigraphy. Clin Nucl Med. 2019; 44(12): 964–965.
  41. Araz M, Cayir D, Ucan B, et al. Clinical Significance of Incidental Pituitary TC-99m MIBI Uptake on Parathyroid Spect and Factors Affecting Uptake Intensity. Cancer Biother Radiopharm. 2018; 33(7): 295–299.
  42. Tiktinsky E, Horne T, Friger M, et al. Pituitary incidentalomas detected with technetium-99m MIBI in patients with suspected parathyroid adenoma: preliminary results. World J Nucl Med. 2012; 11(1): 3–6.
  43. Morris MA, Saboury B, Ahlman M, et al. Parathyroid Imaging: Past, Present, and Future. Front Endocrinol (Lausanne). 2021; 12: 760419.
  44. Beheshti M, Haroon A, Bomanji J, et al. Fluorocholine PET/Computed Tomography. PET Clin. 2014; 9(3): 299–306.
  45. Ciappuccini R, Saguet-Rysanek V, Dorbeau M, et al. Thyroid 18F-fluorocholine uptake in patients with chronic autoimmune thyroiditis. Eur Thyroid J. 2022; 11(3).
  46. Jamsek J, Hocevar M, Bergant D, et al. Diagnostic value of [F]Fluorocholine PET/CT in detection of primary medullary thyroid cancer. Ann Nucl Med. 2021; 35(4): 429–437.
  47. Talbot JN, Périé S, Tassart M, et al. 18F-fluorocholine PET/CT detects parathyroid gland hyperplasia as well as adenoma: 401 PET/CTs in one center. Q J Nucl Med Mol Imaging. 2023; 67(2): 96–113.
  48. Dudoignon D, Delbot T, Cottereau AS, et al. 18F-fluorocholine PET/CT and conventional imaging in primary hyperparathyroidism. Diagn Interv Imaging. 2022; 103(5): 258–265.
  49. Mazurek A, Dziuk M, Witkowska-Patena E, et al. The utility of 18F-fluorocholine PET/CT in the imaging of parathyroid adenomas. Endokrynol Pol. 2022; 73(1): 43–48.
  50. Yu Z, Ananias HJK, Carlucci G, et al. An update of radiolabeled bombesin analogs for gastrin-releasing peptide receptor targeting. Curr Pharm Des. 2013; 19(18): 3329–3341.
  51. Smith CJ, Volkert WA, Hoffman TJ. Gastrin releasing etide (GRP) recetor targeted radioharmaceuticals: A concise udate. In: Hoffman TJ. ed. Nuclear Medicine and Biology. Elsevier Inc. 2003: 861–868.
  52. Dam JH, Olsen BB, Baun C, et al. In Vivo Evaluation of a Bombesin Analogue Labeled with Ga-68 and Co-55/57. Mol Imaging Biol. 2016; 18(3): 368–376.
  53. Varvarigou A, Bouziotis P, Zikos C, et al. Gastrin-releasing peptide (GRP) analogues for cancer imaging. Cancer Biother Radiopharm. 2004; 19(2): 219–229.
  54. Wang L, Bratanovic IJ, Zhang Z, et al. Ga-Labeled [Thz]Bombesin(7-14) Analogs: Promising GRPR-Targeting Agonist PET Tracers with Low Pancreas Uptake. Molecules. 2023; 28(4).
  55. Chen H, Pang Y, Wu J, et al. Comparison of [Ga]Ga-DOTA-FAPI-04 and [F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 2020; 47(8): 1820–1832.
  56. Giesel FL, Kratochwil C, Lindner T, et al. Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J Nucl Med. 2019; 60(3): 386–392.
  57. Hotta M, Sonni I, Benz MR, et al. Ga-FAPI-46 and F-FDG PET/CT in a patient with immune-related thyroiditis induced by immune checkpoint inhibitors. Eur J Nucl Med Mol Imaging. 2021; 48(11): 3736–3737.
  58. Liu H, Yang X, Liu L, et al. Clinical Significance of Diffusely Increased Uptake of Ga-FAPI in Thyroid Gland. Front Med (Lausanne). 2021; 8: 782231.
  59. Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT: Tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019; 60(6): 801–805.
  60. Fu H, Wu J, Huang J, et al. Ga Fibroblast Activation Protein Inhibitor PET/CT in the Detection of Metastatic Thyroid Cancer: Comparison with F-FDG PET/CT. Radiology. 2022; 304(2): 397–405.
  61. Sayiner ZA, Elboa U, Sahin E, et al. Comparison of 68Ga-FAPI-04 and 18F-FDG PET/CT for diagnosis of metastatic lesions in patients with recurrent papillary thyroid carcinoma. Hell J Nucl Med. 2023; 26(1): 41–46.
  62. Bodei L, Kwekkeboom DJ, Kidd M, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008; 26(13): 2124–2130.
  63. Strosberg J, El-Haddad G, Wolin E, et al. NETTER-1 Trial Investigators. Phase 3 Trial of Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017; 376(2): 125–135.
  64. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013; 40(5): 800–816.
  65. Kong G, Grozinsky-Glasberg S, Hofman MS, et al. Efficacy of Peptide Receptor Radionuclide Therapy for Functional Metastatic Paraganglioma and Pheochromocytoma. J Clin Endocrinol Metab. 2017; 102(9): 3278–3287.
  66. Hofman MS, Eddie La, Hicks RJ. Somatostatin receptor imaging with68Ga DOTATATE PET/CT: Clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015; 35(2): 500–516.
  67. Sabet A, Ezziddin K, Pape UF, et al. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with (177)Lu-octreotate. Eur J Nucl Med Mol Imaging. 2014; 41(3): 505–510.
  68. Jia AY, Kashani R, Zaorsky NG, et al. Lutetium-177 DOTATATE: A Practical Review. Pract Radiat Oncol. 2022; 12(4): 305–311.
  69. Valkema R, Pauwels SA, Kvols LK, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0),Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med. 2005; 46(Suppl 1): 83S–91S.
  70. Jarząb B, Dedecjus M, Lewiński A, et al. Diagnosis and treatment of thyroid cancer in adult patients — Recommendations of Polish Scientific Societies and the National Oncological Strategy. 2022 Update. Endokrynol Pol. 2022; 73(2): 173–300.
  71. Giammarile F, Chiti A, Lassmann M, et al. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008; 35(5): 1039–1047.
  72. Kinuya S, Yoshinaga K, Oriuchi N, et al. Draft guidelines regarding appropriate use of (131)I-MIBG radiotherapy for neuroendocrine tumors : Guideline Drafting Committee for Radiotherapy with (131)I-MIBG, Committee for Nuclear Oncology and Immunology, The Japanese Society of Nuclear Medicine. Ann Nucl Med. 2015; 29(6): 543–552.
  73. Jimenez C, Erwin W, Chasen B. Targeted Radionuclide Therapy for Patients with Metastatic Pheochromocytoma and Paraganglioma: From Low-Specific-Activity to High-Specific-Activity Iodine-131 Metaiodobenzylguanidine. Cancers (Basel). 2019; 11(7).
  74. Dillon JS, Bushnell D, Laux DE. High-specific-activity 131iodine-metaiodobenzylguanidine for therapy of unresectable pheochromocytoma and paraganglioma. Future Oncology. 2021; 17(10): 1131–1141.
  75. Kayano D, Kinuya S. Current Consensus on I-131 MIBG Therapy. Nucl Med Mol Imaging. 2018; 52(4): 254–265.
  76. Prado-Wohlwend S, Del Olmo-García MI, Bello-Arques P, et al. Response to targeted radionuclide therapy with [I]MIBG AND [Lu]Lu-DOTA-TATE according to adrenal vs. extra-adrenal primary location in metastatic paragangliomas and pheochromocytomas: A systematic review. Front Endocrinol (Lausanne). 2022; 13: 957172.
  77. Jha A, Taïeb D, Carrasquillo J, et al. High-Specific-Activity-131I-MIBG versus 177Lu-DOTATATE Targeted Radionuclide Therapy for Metastatic Pheochromocytoma and Paraganglioma. Clin Cancer Res. 2021; 27(11): 2989–2995.
  78. Kratochwil C, Giesel FL, Bruchertseifer F, et al. ²¹³Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014; 41(11): 2106–2119.
  79. Jabbar T, Bashir S, Babar M. Review of current status of targeted alpha therapy in cancer treatment. Nucl Med Rev Cent East Eur. 2023; 26(0): 54–67.
  80. Malcolm J, Falzone N, Lee BQ, et al. Targeted Radionuclide Therapy: New Advances for Improvement of Patient Management and Response. Cancers (Basel). 2019; 11(2).
  81. Sgouros G, Bodei L, McDevitt MR, et al. SNM MIRD Committee. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998; 25(9): 1341–1351.
  82. Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005; 23(12): 2754–2762.
  83. Pfeifer A, Knigge U, Binderup T, et al. 64Cu-DOTATATE PET for Neuroendocrine Tumors: A Prospective Head-to-Head Comparison with 111In-DTPA-Octreotide in 112 Patients. J Nucl Med. 2015; 56(6): 847–854.
  84. Opalinska M, Lezaic L, Decristoforo C, et al. Comparison of 99mTc radiolabeled somatostatin antagonist with [ Ga]Ga-DOTA-TATE in a patient with advanced neuroendocrine tumor. Eur J Nucl Med Mol Imaging. 2023; 50(13): 4110–4111.
  85. De Camargo Etchebehere EC, De Oliveira Santos A, Gumz B, et al. 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-octreotide SPECT/CT, and whole-body MR imaging in detection of neuroendocrine tumors: A prospective trial. J Nucl Med. 2014; 55(10): 1598–1604.
  86. Fani M, Nicolas GP, Wild D. Somatostatin Receptor Antagonists for Imaging and Therapy. J Nucl Med. 2017; 58(Suppl 2): 61S–66S.
  87. Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm. 2009; 24(4): 379–393.
  88. Cai W, Chen K, He L, et al. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging. 2007; 34(6): 850–858.
  89. Yoshii Y, Matsumoto H, Yoshimoto M, et al. 64Cu-intraperitoneal radioimmunotherapy: A novel approach for adjuvant treatment in a clinically relevant preclinical model of pancreatic cancer. J Nucl Med. 2019; 60(10): 1437–1443.
  90. Zeng D, Guo Y, White AG, et al. Comparison of conjugation strategies of cross-bridged macrocyclic chelators with cetuximab for copper-64 radiolabeling and PET imaging of EGFR in colorectal tumor-bearing mice. Mol Pharm. 2014; 11(11): 3980–3987.
  91. Handula M, Beekman S, Konijnenberg M, et al. First preclinical evaluation of [Ac]Ac-DOTA-JR11 and comparison with [Lu]Lu-DOTA-JR11, alpha versus beta radionuclide therapy of NETs. EJNMMI Radiopharm Chem. 2023; 8(1): 13.
  92. Hofman MS, Violet J, Hicks RJ, et al. [Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018; 19(6): 825–833.
  93. Juzeniene A, Stenberg VY, Bruland ØS, et al. Dual targeting with Ra/Pb-conjugates for targeted alpha therapy of disseminated cancers: A conceptual approach. Front Med (Lausanne). 2022; 9: 1051825.
  94. Liepe K. Re-HEDP therapy in the therapy of painful bone metastases. World J Nucl Med. 2018; 17(3): 133–138.
  95. Lepareur N, Lacœuille F, Bouvry C, et al. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front Med (Lausanne). 2019; 6: 132.
  96. Rydzewska G, Strzelczyk J, Bednarczuk T, et al. Gastroduodenal neuroendocrine neoplasms including gastrinoma — Update of the diagnostic and therapeutic guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2022; 73(3): 455–490.
  97. Sartor O, Reid RH, Hoskin PJ, et al. Quadramet 424Sm10/11 Study Group. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology. 2004; 63(5): 940–945.
  98. Kiamanesh Z, Ayati N, Alavi R, et al. Systemic absorption of Tc-99m-pertechnetate during dacryoscintigraphy: a note of caution. Orbit. 2010; 29(5): 269–270.