Online first
Original paper
Published online: 2024-07-24

open access

Page views 10
Article views/downloads 10
Get Citation

Connect on Social Media

Connect on Social Media

Angiogenic biomarkers of response to treatment with peptide receptor radionuclide therapy in neuroendocrine tumours

Janusz Strzelczyk1, Monika Wójcik-Giertuga1, Karolina Makulik1, Violetta Rosiek1, Grzegorz Kamiński2, Dariusz Kajdaniuk3, Beata Kos-Kudła1

Abstract

Background: Neuroendocrine tumours (NETs) are a heterogeneous group of tumours, which is characterized by rich vascularization. The role of angiogenesis in NETs has been widely researched. Peptide receptor radionuclide therapy (PRRT) is an effective treatment method for patients with disease progression in NETs. Due to the heterogeneousness of NETs, the response to treatment varies. Currently, the finding of efficient markers helpful in assessing the response to treatment in NETs is crucial. The aim of this study was to assess chromogranin A (CgA) and angiogenic factors in gastro-entero-pancreatic (GEP) and broncho-pulmonary (BP) NET patients treated with PRRT. Material and Methods: The study group included 40 patients with GEP NETs and BP NETs who completed four cycles of PRRT. Serum levels of CgA and angiogenic factors such as vascular endothelial growth factor (VEGF), its receptors (VEGF-R1, VEGF-R2, VEGF-R3), were assessed before and after four cycles of PRRT. All tests were determined using ELISA. Results: The concentration of CgA, VEGF-R1 and VEGF-R2 decreased significantly, whereas VEGF-R3 increased significantly after PRRT. PRRT did not affect VEGF, it was similar before and after the radioisotope treatment. Based on AUROC, only for VEGF-R1 AUC was a consequence of 0.7 which can be considered as a good response to PRRT treatment. Conclusions: VEGF-R1 may be a potential biomarker useful in assessing the effectiveness of PRRT in NET patients.

Article available in PDF format

View PDF Download PDF file

References

  1. Pavel M, Öberg K, Falconi M, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020; 31(7): 844–860.
  2. Kos-Kudła B, Foltyn W, Malczewska A, et al. Update of the diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours) [Aktualizacja zaleceń ogólnych dotyczących postępowania diagnostyczno-terapeutycznego w nowotworach neuroendokrynnych układu pokarmowego (rekomendowane przez Polską Sieć Guzów Neuroendokrynnych)]. Endokrynol Polska. 2022; 73(3): 387–454.
  3. Dasari A, Shen C, Halperin D, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017; 3(10): 1335–1342.
  4. Gustafsson BI, Kidd M, Chan A, et al. Bronchopulmonary neuroendocrine tumors. Cancer. 2008; 113(1): 5–21.
  5. XXXXXXXXXXXBowen KA, Silva SR, Johnson JN, et al. Gastroent Surg 09 — Expression VEGFR GI-NET. 2010; 13(10): 1773–1780.
  6. Dasari A, Hamilton EP, Falchook GS, et al. A dose escalation/expansion study evaluating dose, safety, and efficacy of the novel tyrosine kinase inhibitor surufatinib, which inhibits VEGFR 1, 2, & 3, FGFR 1, and CSF1R, in US patients with neuroendocrine tumors. Invest New Drugs. 2023; 41(3): 421–430.
  7. Dasari A, Shen C, Halperin D, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017; 3(10): 1335–1342.
  8. Das S, Phillips S, Lee CL, et al. Efficacy and toxicity of anti-vascular endothelial growth receptor tyrosine kinase inhibitors in patients with neuroendocrine tumours - A systematic review and meta-analysis. Eur J Cancer. 2023; 182: 43–52.
  9. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249–257.
  10. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005; 69 Suppl 3: 4–10.
  11. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013; 13(12): 871–882.
  12. Pavel ME, Hassler G, Baum U, et al. Circulating of Angiogenic Cytokines Can Predict Tumour Progression and Prognosis in Neuroendocrine Carcinomas. Clin. Endocrinol. 2005; 62(4): 434–443.
  13. Hilfenhaus G, Göhrig A, Pape UF, et al. Placental growth factor supports neuroendocrine tumor growth and predicts disease prognosis in patients. Endocr Relat Cancer. 2013; 20(3): 305–319.
  14. Bates RC, Goldsmith JD, Bachelder RE, et al. Flt-1-dependent survival characterizes the epithelial-mesenchymal transition of colonic organoids. Curr Biol. 2003; 13(19): 1721–1727.
  15. Sandra I, Cazacu IM, Croitoru VM, et al. Circulating Angiogenic Markers in Gastroenteropancreatic Neuroendocrine Neoplasms: A Systematic Review. Curr Issues Mol Biol. 2022; 44(9): 4001–4014.
  16. Panzuto F, Massironi S, Partelli S, et al. Gastro-entero-pancreatic neuroendocrine neoplasia: The rules for non-operative management. Surg Oncol. 2020; 35: 141–148.
  17. Ambrosini V, Kunikowska J, Baudin E, et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur J Cancer. 2021; 146: 56–73.
  18. Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005; 23(12): 2754–2762.
  19. Strosberg J, El-Haddad G, Wolin E, et al. NETTER-1 Trial Investigators. Phase 3 Trial of Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017; 376(2): 125–135.
  20. Sowa-Staszczak A, Pach D, Chrzan R, et al. Peptide receptor radionuclide therapy as a potential tool for neoadjuvant therapy in patients with inoperable neuroendocrine tumours (NETs). Eur J Nucl Med Mol Imaging. 2011; 38(9): 1669–1674.
  21. Feijtel D, Doeswijk GN, Verkaik NS, et al. Inter and intra-tumor somatostatin receptor 2 heterogeneity influences peptide receptor radionuclide therapy response. Theranostics. 2021; 11(2): 491–505.
  22. Feijtel D, de Jong M, Nonnekens J. Peptide Receptor Radionuclide Therapy: Looking Back, Looking Forward. Curr Top Med Chem. 2020; 20(32): 2959–2969.
  23. Glinicki P, Jeske W. [Chromogranin A (CgA) - characteristic of the currently available laboratory methods and conditions which can influence the results]. Endokrynol Pol. 2009; 60(5): 415–419.
  24. Plöckinger U, Rindi G, Arnold R, et al. European Neuroendocrine Tumour Society. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology. 2004; 80(6): 394–424.
  25. Glinicki P, Kapuścińska R, Jeske W. The differences in chromogranin A (CgA) concentrations measured in serum and in plasma by IRMA and ELISA methods. Endokrynol Pol. 2010; 61(4): 346–350.
  26. Huizing DMV, Aalbersberg EA, Versleijen MWJ, et al. Early response assessment and prediction of overall survival after peptide receptor radionuclide therapy. Cancer Imaging. 2020; 20(1): 57.
  27. Gut P, Czarnywojtek A, Fischbach J, et al. Chromogranin A - unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch Med Sci. 2016; 12(1): 1–9.
  28. Malczewska A, Kos-Kudła B, Kidd M, et al. The clinical applications of a multigene liquid biopsy (NETest) in neuroendocrine tumors. Adv Med Sci. 2020; 65(1): 18–29.
  29. Mulder BG, Koller M, Duiker EW, et al. Intraoperative Molecular Fluorescence Imaging of Pancreatic Cancer by Targeting Vascular Endothelial Growth Factor: A Multicenter Feasibility Dose-Escalation Study. J Nucl Med. 2023; 64(1): 82–89.
  30. Zhang J, Jia Z, Li Q, et al. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer. 2007; 109(8): 1478–1486.
  31. Terris B, Scoazec JY, Rubbia L, et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology. 1998; 32(2): 133–138.
  32. Silva SR, Bowen KA, Rychahou PG, et al. VEGFR-2 expression in carcinoid cancer cells and its role in tumor growth and metastasis. Int J Cancer. 2011; 128(5): 1045–1056.
  33. Hansel DE, Rahman A, Hermans J, et al. Liver metastases arising from well-differentiated pancreatic endocrine neoplasms demonstrate increased VEGF-C expression. Mod Pathol. 2003; 16(7): 652–659.
  34. Cigrovski Berković M, Čačev T, Catela Ivković T, et al. High VEGF serum values are associated with locoregional spread of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Mol Cell Endocrinol. 2016; 425: 61–68.
  35. Zurita AJ, Khajavi M, Wu HK, et al. Circulating cytokines and monocyte subpopulations as biomarkers of outcome and biological activity in sunitinib-treated patients with advanced neuroendocrine tumours. Br J Cancer. 2015; 112(7): 1199–1205.
  36. Strzelczyk J, Wójcik-Giertuga M, Cuber P, et al. Assessment of the Concentration of Endogenous Factors Regulating Angiogenesis, VASH-1 and VEGF-A, in the Blood Serum of Patients with Neuroendocrine Neoplasms. Biomed Res Int. 2022; 2022: 9084393.
  37. Leong A, Kim M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Int J Mol Sci. 2020; 21(22).
  38. Giannetta E, La Salvia A, Rizza L, et al. Are Markers of Systemic Inflammatory Response Useful in the Management of Patients With Neuroendocrine Neoplasms? Front Endocrinol (Lausanne). 2021; 12: 672499.
  39. Halfdanarson TR, Strosberg JR, Tang L, et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Pancreatic Neuroendocrine Tumors. Pancreas. 2020; 49(7): 863–881.
  40. Dasgupta P. Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol Ther. 2004; 102(1): 61–85.
  41. García de la Torre N, Wass JAH, Turner HE. Antiangiogenic effects of somatostatin analogues. Clin Endocrinol (Oxf). 2002; 57(4): 425–441.
  42. Rosiek V, Janas K. Assessment of VEGF and VEGF R1 serum levels in patients with neuroendocrine neoplasms before and after treatment with first-generation somatostatin analogues. Endokrynol Pol. 2022; 73(3): 612–618.
  43. Rosiek V, Janas K, Kos-Kudła B. Association between Biomarkers (VEGF-R2, VEGF-R3, VCAM-1) and Treatment Duration in Patients with Neuroendocrine Tumors Receiving Therapy with First-Generation Somatostatin Analogues. Biomedicines. 2023; 11(3).
  44. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 501–513.
  45. Yao JC, Shah MH, Ito T, et al. RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 514–523.
  46. Mateo J, Heymach JV, Zurita AJ. Circulating biomarkers of response to sunitinib in gastroenteropancreatic neuroendocrine tumors: current data and clinical outlook. Mol Diagn Ther. 2012; 16(3): 151–161.
  47. Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006; 24(1): 25–35.
  48. Bello CD, Friece C, Smeraglia J, et al. Analysis of Circulating Biomarkers of Sunitinib Malate in Patients With Unresectable Neuroendocrine Tumors (NET): VEGF, IL-8, and Soluble VEGF Receptors 2 and 3. J Clin Oncol. 2006; 24(18_Suppl).
  49. Goulart A, Ferreira C, Rodrigues A, et al. The correlation between serum vascular endothelial growth factor (VEGF) and tumor VEGF receptor 3 in colorectal cancer. Ann Surg Treat Res. 2019; 97(1): 15–20.
  50. Durma AD, Saracyn M, Kołodziej M, et al. Epidemiology of Neuroendocrine Neoplasms and Results of Their Treatment with [Lu]Lu-DOTA-TATE or [Lu]Lu-DOTA-TATE and [Y]Y-DOTA-TATE-A Six-Year Experience in High-Reference Polish Neuroendocrine Neoplasm Center. Cancers (Basel). 2023; 15(22).
  51. Iravani A, Parihar AS, Akhurst T, et al. Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms. Cancer Imaging. 2022; 22(1): 25.
  52. Ohlendorf F, Werner RA, Henkenberens C, et al. Predictive and Prognostic Impact of Blood-Based Inflammatory Biomarkers in Patients with Gastroenteropancreatic Neuroendocrine Tumors Commencing Peptide Receptor Radionuclide Therapy. Diagnostics (Basel). 2021; 11(3).