Galectin-3: a novel blood test for the classification of patients with COPD. An observational study
Abstract
INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is one of the major causes of mortality and mortality affecting the whole world. In the inflammatory process, lectin is elevated and consequently, Galectin-3 expression is increased. This relation has been revealed by studies on coronary diseases. However, studies on the association of Galectin-3 with COPD and even other pulmonary diseases have been limited, although it has been studied and described on cardiologic patients. For this reason, in this study Galectin-3 levels in different stages of COPD patients were investigated and whether Galectin-3 could be a guide clinically.
MATERIAL AND METHODS: This is an observational prospective study, approved by local ethic committee (30112015-12), which included three groups of patients, COPD exacerbation, COPD stable and control group, admitted to tertiary healthcare between 01.09.2016 and 01.09.2017.
RESULTS: 137 subjects were included in the study. The mean age of patients in the study was 70.6. Galectin- 3 level in the group of COPD (exacerbation and stable) was significantly lower than the control group (p < 0.001). The Galectin-3 level was significantly lower in COPD exacerbation group than groups of stable COPD and control. And also, Galectin-3 level was significantly lower in stable COPD group than the control group (p values: 0.034, 0.001 and 0.013, respectively). The ROC analysis for the Galectin-3 levels between the COPD patients (exacerbation and stable) and the control group is shown in Figure 2 (AUC = 0.784). When the cut-off points of Galectin-3 is selected as 11.4; for this cut-off point, sensitivity is 83% and specificity is 71% for this cut-off point (AUC: 0.79 %95 GA: 0.70–0.86 p < 0.001).
CONCLUSIONS: COPD is a disease with high mortality and morbidity and efforts are being made to identify its severity and exacerbations with various biomarkers. In this study, Galectin-3 levels were found to be lower in patients with stable COPD group according to the control group. In addition, galactin-3 levels were found to be lower in COPD exacerbation group according to both Stable COPD group and control group. Although a certain threshold value was found in this study, more studies are needed to determine this threshold value more precisely. However, it is clear that these data are promising.
Keywords: blood testchronic obstructive pulmonary diseasetreatmentT-lymphocytes
References
- Yawn BBp, Thomashaw B, Mannino DM, et al. The 2017 Update to the COPD Foundation COPD Pocket Consultant Guide. Chronic Obstr Pulm Dis. 2017; 4(3): 177–185.
- Gold PM. The 2007 GOLD Guidelines: a comprehensive care framework. Respir Care. 2009; 54(8): 1040–1049.
- Tan WC, Bourbeau J, Aaron SD, et al. Global Initiative for Chronic Obstructive Lung Disease 2017 Classification and Lung Function Decline in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2018; 197(5): 670–673.
- Bourdin A, Burgel PR, Chanez P, et al. Recent advances in COPD: pathophysiology, respiratory physiology and clinical aspects, including comorbidities. Eur Respir Rev. 2009; 18(114): 198–212.
- Fabbri L, Romagnoli M, Corbetta L, et al. Differences in Airway Inflammation in Patients with Fixed Airflow Obstruction Due to Asthma or Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2003; 167(3): 418–424.
- Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A. 1996; 93(13): 6737–6742.
- Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006; 1760(4): 616–635.
- Hsu DK, Yang RY, Pan Z, et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol. 2000; 156(3): 1073–1083.
- Jarad N. Chronic obstructive pulmonary disease (COPD) and old age? Chron Respir Dis. 2011; 8(2): 143–151.
- Çolak Y, Afzal S, Nordestgaard BG, et al. Prognosis of asymptomatic and symptomatic, undiagnosed COPD in the general population in Denmark: a prospective cohort study. Lancet Respir Med. 2017; 5(5): 426–434.
- Mannino DM. Does Undiagnosed Chronic Obstructive Pulmonary Disease Matter? Am J Respir Crit Care Med. 2016; 194(3): 250–252.
- Sin DD, Anthonisen NR, Soriano JB, et al. Mortality in COPD: Role of comorbidities. Eur Respir J. 2006; 28(6): 1245–1257.
- Mukaro VR, Bylund J, Hodge G, et al. Lectins offer new perspectives in the development of macrophage-targeted therapies for COPD/emphysema. PLoS One. 2013; 8(2): e56147.
- Dobashi K, Aihara M, Araki T, et al. Regulation of LPS induced IL-12 production by IFN-gamma and IL-4 through intracellular glutathione status in human alveolar macrophages. Clin Exp Immunol. 2001; 124(2): 290–296.
- Rabinovich GA, Rubinstein N, Toscano MA. Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta. 2002; 1572(2-3): 274–284.
- Orlandi F, Saggiorato E, Pivano G, et al. Galectin-3 is a presurgical marker of human thyroid carcinoma. Cancer Res. 1998; 58(14): 3015–3020.
- Kleshchenko YY, Moody TN, Furtak VA, et al. Human galectin-3 promotes Trypanosoma cruzi adhesion to human coronary artery smooth muscle cells. Infect Immun. 2004; 72(11): 6717–6721.
- van Kimmenade RR, Januzzi JL, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006; 48(6): 1217–1224.
- Shah RV, Chen-Tournoux AA, Picard MH, et al. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010; 12(8): 826–832.