open access
Overexpression of miR-652-5p in new onset type 1 diabetes


- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland, Strzeszynska 32, 60-479 Poznan, Poland
- Department of Paediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
- Family Physician Clinic, Murowana Goslina, Poland
- Department of Endocrinology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
open access
Abstract
Abstract
Keywords
T1D; expression; miR-652-5p; ADAR; MARCH5


Title
Overexpression of miR-652-5p in new onset type 1 diabetes
Journal
Issue
Article type
Research paper
Pages
189-195
Published online
2018-09-11
Page views
5944
Article views/downloads
733
DOI
10.5603/DK.2018.0019
Bibliographic record
CD 2018;7(4):189-195.
Keywords
T1D
expression
miR-652-5p
ADAR
MARCH5
Authors
Magdalena Zurawek
Agnieszka Dzikiewicz-Krawczyk
Katarzyna Izykowska
Iwona Ziolkowska-Suchanek
Bogda Skowronska
Maria Czainska
Marta Kazimierska
Marta Podralska
Piotr Fichna
Grzegorz Krzysztof Przybylski
Jerzy Nowak
Marta Fichna
Natalia Rozwadowska


- Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010; 464(7293): 1293–1300.
- Davies JL, Kawaguchi Y, Bennett ST, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature. 1994; 371(6493): 130–136.
- Aly TA, Ide A, Jahromi MM, et al. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci U S A. 2006; 103(38): 14074–14079.
- Ueda H, Howson JMM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003; 423(6939): 506–511.
- Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004; 36(4): 337–338.
- Smyth DJ, Cooper JD, Bailey R, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006; 38(6): 617–619.
- Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007; 39(9): 1074–1082.
- Vaarala O, Klemetti P, Juhela S, et al. Effect of coincident enterovirus infection and cows' milk exposure on immunisation to insulin in early infancy. Diabetologia. 2002; 45(4): 531–534.
- Wasmuth HE, Kolb H. Cow's milk and immune-mediated diabetes. Proc Nutr Soc. 2000; 59(4): 573–579.
- Wen Li, Ley RE, Volchkov PYu, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008; 455(7216): 1109–1113.
- Weintrob N, Sprecher E, Israel S, et al. Type 1 diabetes environmental factors and correspondence analysis of HLA class II genes in the Yemenite Jewish community in Israel. Diabetes Care. 2001; 24(4): 650–653.
- Brown CC, Wedderburn LR. Genetics: Mapping autoimmune disease epigenetics: what's on the horizon? Nat Rev Rheumatol. 2015; 11(3): 131–132.
- Jeffries MA, Sawalha AH. Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol. 2015; 11(1): 45–58.
- Simpson LJ, Ansel KM. MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest. 2015; 125(6): 2242–2249.
- Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol. 2013; 13(9): 666–678.
- O'Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012; 30: 295–312.
- Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009; 136(1): 26–36.
- Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008; 132(5): 875–886.
- Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008; 9(4): 405–414.
- Li QJ, Chau J, Ebert PJR, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007; 129(1): 147–161.
- Kang SG, Liu WH, Lu P, et al. MicroRNAs of the miR-17∼92 family are critical regulators of T(FH) differentiation. Nat Immunol. 2013; 14(8): 849–857.
- Zheng Y, Wang Z, Zhou Z. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cell Mol Immunol. 2017; 14(6): 488–496.
- Zurawek M, Dzikiewicz-Krawczyk A, Izykowska K, et al. miR-487a-3p upregulated in type 1 diabetes targets CTLA4 and FOXO3. Diabetes Res Clin Pract. 2018 [Epub ahead of print]; 142: 146–153.
- Rice GI, Kasher PR, Forte GMA, et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet. 2012; 44(11): 1243–1248.
- Shao WH, Shu DH, Zhen Y, et al. Prion-like Aggregation of Mitochondrial Antiviral Signaling Protein in Lupus Patients Is Associated With Increased Levels of Type I Interferon. Arthritis Rheumatol. 2016; 68(11): 2697–2707.
- Fourlanos S, Varney MD, Tait BD, et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care. 2008; 31(8): 1546–1549.
- Hezova R, Slaby O, Faltejskova P, et al. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol. 2010; 260(2): 70–74.
- Yang M, Ye L, Wang B, et al. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes. 2015; 7(2): 158–165.
- Sebastiani G, Grieco FA, Spagnuolo I, et al. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev. 2011; 27(8): 862–866.
- Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009; 10(12): 1252–1259.
- Salas-Pérez F, Codner E, Valencia E, et al. MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology. 2013; 218(5): 733–737.
- Satake E, Pezzolesi MG, Md Dom ZI, et al. Circulating miRNA Profiles Associated With Hyperglycemia in Patients With Type 1 Diabetes. Diabetes. 2018; 67(5): 1013–1023.
- Rice GI, Forte GMA, Szynkiewicz M, et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013; 12(12): 1159–1169.
- Crow YJ, Chase DS, Lowenstein Schmidt J, et al. Human Disease Phenotypes Associated With Mutations in TREX1. Journal of Clinical Immunology. 2015; 35(3): 296–312.
- Dominguez-Gutierrez PR, Ceribelli A, Satoh M, et al. Elevated signal transducers and activators of transcription 1 correlates with increased C-C motif chemokine ligand 2 and C-X-C motif chemokine 10 levels in peripheral blood of patients with systemic lupus erythematosus. Arthritis Res Ther. 2014; 16(1): R20.