Vol 7, No 3 (2018)
Review article
Published online: 2018-05-21

open access

Page views 6122
Article views/downloads 990
Get Citation

Connect on Social Media

Connect on Social Media

The importance of epigenetic factors for the diagnostics and treatment of type 2 diabetes mellitus

Agnieszka Stelmaszyk1, Marzena Dworacka1
Clin Diabetol 2018;7(3):164-170.

Abstract

The level of expression of certain genes modifying the phenotype may affect the progression of diabetes mellitus and its complications. Gene expression is controlled by epigenetic modifications, influenced by intracellular and environmental factors, e.g. nutrition model and physical activity. These modifications appear throughout whole life, from conception until the time of death, and they are closely dependent on cell differentiation, DNA repair and cellular stress. Hopefully, the knowledge of epigenetics might be used in the future as an element of personalized treatment of diabetes. The following article aims to review the most important mechanisms of epigenetic modifications in context of pathogenesis and pathophysiology of type 2 diabetes mellitus.

Article available in PDF format

View PDF Download PDF file

References

  1. Deans C, Maggert KA. What do you mean, Genetics. 2015; 199(4): 887–896.
  2. Russo V, Martienssen RA, Riggs AD. Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 1996.
  3. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol. 2009; 10(3): 192–206.
  4. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003; 33 Suppl: 245–254.
  5. Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39(16): 7223–7233.
  6. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007; 61(5 Pt 2): 24R–29R.
  7. McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol (1985). 2011; 110(1): 258–263.
  8. Cencioni C, Spallotta F, Martelli F, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci. 2013; 14(9): 17643–17663.
  9. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006; 31(2): 89–97.
  10. El Hajj N, Schneider E, Lehnen H, et al. Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction. 2014; 148(6): R111–R120.
  11. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008; 105(44): 17046–17049.
  12. Nordin M, Bergman D, Halje M, et al. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif. 2014; 47(3): 189–199.
  13. Raychaudhuri N, Raychaudhuri S, Thamotharan M, et al. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem. 2008; 283(20): 13611–13626.
  14. Guénard F, Deshaies Y, Cianflone K, et al. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci U S A. 2013; 110(28): 11439–11444.
  15. Bouchard L, Thibault S, Guay SP, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010; 33(11): 2436–2441.
  16. Bouchard L, Hivert MF, Guay SP, et al. Placental adiponectin gene DNA methylation levels are associated with mothers' blood glucose concentration. Diabetes. 2012; 61(5): 1272–1280.
  17. Rathmann W, Scheidt-Nave C, Roden M, et al. Type 2 diabetes: prevalence and relevance of genetic and acquired factors for its prediction. Dtsch Arztebl Int. 2013; 110(19): 331–337.
  18. Wu L, Lu Y, Jiao Y, et al. Paternal Psychological Stress Reprograms Hepatic Gluconeogenesis in Offspring. Cell Metab. 2016; 23(4): 735–743.
  19. Iyer A, Fairlie DP, Brown L. Lysine acetylation in obesity, diabetes and metabolic disease. Immunol Cell Biol. 2012; 90(1): 39–46.
  20. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011; 29: 415–445.
  21. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006; 116(7): 1793–1801.
  22. Funato H, Oda S, Yokofujita J, et al. Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS One. 2011; 6(4): e18950.
  23. Schug TT, Li X. Sirtuin 1 in lipid metabolism and obesity. Ann Med. 2011; 43(3): 198–211.
  24. Siebel AL, Fernandez AZ, El-Osta A. Glycemic memory associated epigenetic changes. Biochem Pharmacol. 2010; 80(12): 1853–1859.
  25. Lachin JM, Genuth S, Cleary P, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000; 342(6): 381–389.
  26. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998; 317(7160): 703–713.
  27. Cencioni C, Spallotta F, Greco S, et al. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol. 2014; 51: 155–158.
  28. Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009; 58(5): 1229–1236.
  29. Bianchi C, Del Prato S. Metabolic memory and individual treatment aims in type 2 diabetes--outcome-lessons learned from large clinical trials. Rev Diabet Stud. 2011; 8(3): 432–440.
  30. Roy S, Sala R, Cagliero E, et al. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A. 1990; 87(1): 404–408.
  31. Berezin A. Metabolic memory phenomenon in diabetes mellitus: Achieving and perspectives. Diabetes Metab Syndr. 2016; 10(2 Suppl 1): S176–S183.
  32. Nathan DM, Genuth S, Lachin J, et al. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14): 977–986.
  33. Chen Z, Miao F, Paterson AD, et al. DCCT/EDIC Research Group. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A. 2016; 113(21): E3002–E3011.
  34. Vallois D, Niederhäuser G, Ibberson M, et al. Gluco-incretins regulate beta-cell glucose competence by epigenetic silencing of Fxyd3 expression. PLoS One. 2014; 9(7): e103277.
  35. Zhao S, Li J, Wang Na, et al. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway. Mol Med Rep. 2015; 12(4): 6112–6118.
  36. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000; 64(2): 435–459.
  37. Wegner M, Pioruńska-Stolzmann M, Jagodziński PP. Wpływ modyfikacji struktury chromatyny na rozwój przewlekłych powikłań cukrzycowych. Postepy Hig Med Dosw (Online). 2015; 69: 964–968.
  38. Chen M, Zhang L. Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today. 2011; 16(23-24): 1007–1018.
  39. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014; 6(4): a018713.