Tom 18, Nr 1 (2021)
Artykuł przeglądowy
Opublikowany online: 2021-05-27

dostęp otwarty

Wyświetlenia strony 791
Wyświetlenia/pobrania artykułu 128
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Zaburzenia gospodarki potasowej u chorych z nadciśnieniem tętniczym

Stanisław Surma1, Marcin Adamczak1
Choroby Serca i Naczyń 2021;18(1):1-19.

Streszczenie

Zaburzenia gospodarki potasowej obejmują hiperkaliemię i hipokaliemię. Hiperkaliemia jest powikłaniem stosowania leków zmniejszających wytwarzanie reniny w aparacie przykłębuszkowym, ograniczających aktywność enzymu konwertującego angiotensynę, antagonistów receptora angiotensyny, zmniejszających wytwarzanie aldosteronu, zmniejszających aktywność nabłonkowego kanału sodowego oraz leków zmniejszających ilość sodu docierającego do cewki zbiorczej. Ponadto hiperkaliemia występuje u chorych na przewlekłą chorobą nerek oraz z ostrym uszkodzeniem nerek. Hipokaliemia natomiast stanowi najczęściej powikłanie stosowania tiazydowych i tiazydopodobnych leków moczopędnych, pętlowych leków moczopędnych, hiperaldosteronizmu pierwotnego, a także spożywania produktów zawierających lukrecję. Mechanizmem prowadzącym do hipokaliemii w wyżej wymienionych sytuacjach jest nadmierna utrata potasu z moczem. W celu zmniejszenia ryzyka hiperkaliemii i hipokaliemii należy przede wszystkim monitorować stężenie potasu w osoczu u wszystkich chorych ze zwiększonym ryzykiem wystąpienia tych zaburzeń, a następnie — biorąc pod uwagę aktualną kaliemię — modyfikować leczenie farmakologiczne i dietetyczne.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Epstein M, Lifschitz MD. Potassium homeostasis and dyskalemias: the respective roles of renal, extrarenal, and gut sensors in potassium handling. Kidney Int Suppl (2011). 2016; 6(1): 7–15.
  2. Franek E, Kokot F. Hipokaliemia. ChSiN. 2006; 3(4): 203–206.
  3. Wright SH. Generation of resting membrane potential. Adv Physiol Educ. 2004; 28(1-4): 139–142.
  4. Clausen T, Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int. 1989; 35(1): 1–13.
  5. Nieszporek T, Więcek A. Zaburzenia gospodarki sodowej i potasowej. In: Nieszporek T, Więcek A. ed. Choroby nerek. Kompendium. PZWL, Warszawa 2020: 97–99.
  6. Palmer BF, Clegg DJ. Physiology and pathophysiology of potassium homeostasis: core curriculum 2019. Am J Kidney Dis. 2019; 74(5): 682–695.
  7. Bia MJ, Tyler KA, DeFronzo RA, et al. Extrarenal potassium homeostasis. Am J Physiol. 1981; 240(4): F257–F268.
  8. Surma S, Więcek A, Adamczak M. Hipokaliemia u chorych na nadciśnienie tętnicze. Terapia. 2020; 10: 44–55.
  9. Kunachowicz H, Nadolna I, Przygoda B, Iwanow K. Tabele składu i wartości odżywczej żywności. Wydawnictwo Lekarskie PZWL, Warszawa 2005.
  10. Normy żywienia dla populacji Polski (ed. Jarosz M.). Instytut Żywności i Żywienia w Warszawie, Warszawa 2017.
  11. Greenlee M, Wingo CS, McDonough AA, et al. Narrative review: evolving concepts in potassium homeostasis and hypokalemia. Ann Intern Med. 2009; 150(9): 619–625.
  12. Palmer BF, Clegg DJ. Hyperkalemia. JAMA. 2015; 314(22): 2405–2406.
  13. De Nicola L, Di Lullo L, Paoletti E, et al. Chronic hyperkalemia in non-dialysis CKD: controversial issues in nephrology practice. J Nephrol. 2018; 31(5): 653–664.
  14. Long B, Warix JR, Koyfman A. Hyperkalemia in the emergency department: yes, a need for further evidence, but do not discount what we have. J Emerg Med. 2019; 57(1): 103–105.
  15. Veltri KT, Mason C. Medication-induced hypokalemia. P T. 2015; 40(3): 185–190.
  16. Tykarski A, Filipiak KJ, Januszewicz A, et al. Wytyczne PTNT. Zasady postępowania w nadciśnieniu tętniczym. Arterial Hypertens. 2019; 23(2): 41–90.
  17. Hughes-Austin JM, Rifkin DE, Beben T, et al. The relation of serum potassium concentration with cardiovascular events and mortality in community-living individuals. Clin J Am Soc Nephrol. 2017; 12(2): 245–252.
  18. Coresh J, Heerspink HJL, Sang Y, et al. Chronic Kidney Disease Prognosis Consortium and Chronic Kidney Disease Epidemiology Collaboration, CKD Prognosis Consortium. Serum potassium and adverse outcomes across the range of kidney function: a CKD prognosis consortium meta-analysis. Eur Heart J. 2018; 39(17): 1535–1542.
  19. Brueske B, Sidhu MS, Schulman-Marcus J, et al. Hyperkalemia is associated with increased mortality among unselected cardiac intensive care unit patients. J Am Heart Assoc. 2019; 8(7): e011814.
  20. Einhorn LM, Zhan M, Hsu VD, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med. 2009; 169(12): 1156–1162.
  21. Gasparini A, Evans M, Barany P, et al. Plasma potassium ranges associated with mortality across stages of chronic kidney disease: the stockholm creatinine measurements (SCREAM) project. Nephrol Dial Transplant. 2019; 34(9): 1534–1541.
  22. Mattsson N, Nielsen OW, Johnson L, et al. Prognostic impact of mild hypokalemia in terms of death and stroke in the general population — a prospective population study. Am J Med. 2018; 131(3): 318.e9–318.e19.
  23. Núñez J, Núñez E, Sanchis J, et al. Long-term potassium monitoring and dynamics in heart failure and risk of mortality. Circulation. 2018; 137(13): 1320–1330.
  24. Aldahl M, Polcwiartek C, Davidsen L, et al. Short-term prognosis of normalising serum potassium following an episode of hypokalaemia in patients with chronic heart failure. Eur J Prev Cardiol. 2020 [Epub ahead of print]: 2047487320911154.
  25. Goyal A, Spertus JA, Gosch K, et al. Serum potassium levels and mortality in acute myocardial infarction. JAMA. 2012; 307(2): 157–164.
  26. Ferreira JP, Butler J, Rossignol P, et al. Abnormalities of potassium in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(22): 2836–2850.
  27. Yancy C, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the american college of cardiology/american heart association task force on clinical practice guidelines and the heart failure society of america. Circulation. 2017; 136(6): 137–161.
  28. Ponikowski P, Voors A, Anker S, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2016; 37(27): 2129–2200.
  29. Hyperkalemia: from pathophysiology to treatment. Nephrol Dial Transplant. 2019; 34(Suppl 3): iii1.
  30. Wang AYM. Optimally managing hyperkalemia in patients with cardiorenal syndrome. Nephrol Dial Transplant. 2019; 34(Suppl 3): iii36–iii44.
  31. Badanie i diagnostyka chorego na nadciśnienie tętnicze. In: Januszewicz A, Kabat M, Prejbisz A. ed. Vademecum diagnostyki i leczenia nadciśnienia tętniczego. Poradnik dla lekarza praktyka. Medycyna Praktyczna 2019: 71.
  32. Liamis G, Liberopoulos E, Barkas F, et al. Spurious electrolyte disorders: a diagnostic challenge for clinicians. Am J Nephrol. 2013; 38(1): 50–57.
  33. Di Lullo L, Ronco C, Granata A, et al. Chronic hyperkalemia in cardiorenal patients: risk factors, diagnosis, and new treatment options. Cardiorenal Med. 2019; 9(1): 8–21.
  34. Palmer BF, Carrero JJ, Clegg DJ, et al. Diagnosis and treatment of hyperkalemia. Cleve Clin J Med. 2017; 84(12): 934–942.
  35. Patel S, Rauf A, Khan H, et al. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017; 94: 317–325.
  36. Simon LV, Hashimi MF, Farrell MW. Hyperkalemia. [Update 2019 Dec 10]. StatPearls Publishing, Treasure Island (FL) 2020.
  37. Collins AJ, Pitt B, Reaven N, et al. Association of serum potassium with all-cause mortality in patients with and without heart failure, chronic kidney disease, and/or diabetes. Am J Nephrol. 2017; 46(3): 213–221.
  38. Sarafidis PA, Blacklock R, Wood E, et al. Prevalence and factors associated with hyperkalemia in predialysis patients followed in a low-clearance clinic. Clin J Am Soc Nephrol. 2012; 7(8): 1234–1241.
  39. Nilsson E, Gasparini A, Ärnlöv J, et al. Incidence and determinants of hyperkalemia and hypokalemia in a large healthcare system. Int J Cardiol. 2017; 245: 277–284.
  40. Betts KA, Woolley JM, Mu F, et al. The prevalence of hyperkalemia in the United States. Curr Med Res Opin. 2018; 34(6): 971–978.
  41. Chang AR, Sang Y, Leddy J, et al. Antihypertensive medications and the prevalence of hyperkalemia in a large health system. Hypertension. 2016; 67(6): 1181–1188.
  42. Rutkowski B, Małgorzewicz S, Łysiak-Szydłowska W, et al. Stanowisko dotyczące rozpoznawania oraz postępowania w przypadku niedożywienia dorosłych chorych z przewlekłą chorobą nerek. Forum Nefrol. 2010; 3(2): 138–142.
  43. Dąbrowski P, Olszanecka-Glinianowicz M, Chudek J. Żywienie w przewlekłej cho-robie nerek. Endokrynol Otył Zab Przem Mat. 2011; 7(4): 229–237.
  44. Wright M, Jones C. Renal association clinical practice guideline on nutrition in CKD. Nephron Clin Pract. 2011; 118(Suppl 1): c153–c164.
  45. Kalantar-Zadeh K, Fouque D. Nutritional management of chronic kidney disease. N Engl J Med. 2017; 377(18): 1765–1776.
  46. Zimrin AB, Hess JR. Current issues relating to the transfusion of stored red blood cells. Vox Sang. 2009; 96(2): 93–103.
  47. Chen J, Singhapricha T, Memarzadeh M, et al. Storage age of transfused red blood cells during liver transplantation and its intraoperative and postoperative effects. World J Surg. 2012; 36(10): 2436–2442.
  48. Kovesdy CP. Updates in hyperkalemia: outcomes and therapeutic strategies. Rev Endocr Metab Disord. 2017; 18(1): 41–47.
  49. Hunter RW, Bailey MA. Hyperkalemia: pathophysiology, risk factors and consequences. Nephrol Dial Transplant. 2019; 34(Suppl 3): iii2–iii11.
  50. Salem CB, Badreddine A, Fathallah N, et al. Drug-induced hyperkalemia. Drug Safety. 2014; 37(9): 677–692.
  51. Fried LF, Emanuele N, Zhang JH, et al. VA NEPHRON-D Investigators. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013; 369(20): 1892–1903.
  52. De Coster R, Coene MC, Haelterman C, et al. Effects of high-dose ketoconazole treatment on adrenal mineralocorticoid biosynthesis in dogs and rats. Acta Endocrinol (Copenh). 1987; 115(3): 423–431.
  53. Ernst ME, Moser M. Use of diuretics in patients with hypertension. N Engl J Med. 2009; 361(22): 2153–2164.
  54. Dinsdale C, Wani M, Steward J, et al. Tolerability of spironolactone as adjunctive treatment for heart failure in patients over 75 years of age. Age Ageing. 2005; 34(4): 395–398.
  55. Vukadinović D, Lavall D, Vukadinović AN, et al. True rate of mineralocorticoid receptor antagonists-related hyperkalemia in placebo-controlled trials: A meta-analysis. Am Heart J. 2017; 188: 99–108.
  56. Struthers A, Krum H, Williams GH. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol. 2008; 31(4): 153–158.
  57. Bakris GL, Agarwal R, Chan JC, et al. Mineralocorticoid Receptor Antagonist Tolerability Study–Diabetic Nephropathy (ARTS-DN) Study Group. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015; 314(9): 884–894.
  58. Pei H, Wang W, Zhao Di, et al. The use of a novel non-steroidal mineralocorticoid receptor antagonist finerenone for the treatment of chronic heart failure: a systematic review and meta-analysis. Medicine (Baltimore). 2018; 97(16): e0254.
  59. Bird ST, Pepe SR, Etminan M, et al. The association between drospirenone and hyperkalemia: a comparative-safety study. BMC Clin Pharmacol. 2011; 11: 23.
  60. Loughlin J, Seeger JD, Eng PM, et al. Risk of hyperkalemia in women taking ethinylestradiol/drospirenone and other oral contraceptives. Contraception. 2008; 78(5): 377–383.
  61. Perazella MA. Trimethoprim-induced hyperkalaemia: clinical data, mechanism, prevention and management. Drug Saf. 2000; 22(3): 227–236.
  62. Antoniou T, Gomes T, Juurlink DN, et al. Trimethoprim-sulfamethoxazole-induced hyperkalemia in patients receiving inhibitors of the renin-angiotensin system: a population-based study. Arch Intern Med. 2010; 170(12): 1045–1049.
  63. O'Brien JG, Dong BJ, Coleman RL, et al. A 5-year retrospective review of adverse drug reactions and their risk factors in human immunodeficiency virus-infected patients who were receiving intravenous pentamidine therapy for pneumocystis carinii pneumonia. Clin Infect Dis. 1997; 24(5): 854–859.
  64. Hamilton PK, Morgan NA, Connolly GM, et al. Understanding acid-base disorders. Ulster Med J. 2017; 86(3): 161–166.
  65. Adamczak M, Masajtis-Zagajewska A, Mazanowska O, et al. Diagnosis and treatment of metabolic acidosis in patients with chronic kidney disease - position statement of the working Group of the Polish Society of Nephrology. Kidney Blood Press Res. 2018; 43(3): 959–969.
  66. Swenson ER. Severe hyperkalemia as a complication of timolol, a topically applied beta-adrenergic antagonist. Arch Intern Med. 1986; 146(6): 1220–1221.
  67. McCauley J, Murray J, Jordan M, et al. Labetalol-induced hyperkalemia in renal transplant recipients. Am J Nephrol. 2002; 22(4): 347–351.
  68. Lehnhardt A, Kemper MJ. Pathogenesis, diagnosis and management of hyperkalemia. Pediatric Nephrology. 2011; 26(3): 377–384.
  69. Melamed ML, Horwitz EJ, Dobre MA, et al. Effects of sodium bicarbonate in CKD stages 3 and 4: a randomized, placebo-controlled, multicenter clinical trial. Am J Kidney Dis. 2020; 75(2): 225–234.
  70. Surma S, Adamczak M, Więcek A. Hiponatremia spowodowana tiazydowymi i tia-zydopodobnymi lekami moczopędnymi. Terapia. 2019; 10(381): 4–10.
  71. Lepage L, Desforges K, Lafrance JP. New drugs to prevent and treat hyperkalemia. Curr Opin Nephrol Hypertens. 2016; 25(6): 524–528.
  72. Leon SJ, Harasemiw O, Tangri N. New therapies for hyperkalemia. Curr Opin Nephrol Hypertens. 2019; 28(3): 238–244.
  73. Huang I. RLY5016: A novel, non-absorbed, therapeutic polymer for serum potassium control. J Am Soc Nephrol. 2010; 21: 482–483.
  74. Weir MR, Bakris GL, Bushinsky DA, et al. OPAL-HK Investigators. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med. 2015; 372(3): 211–221.
  75. Bakris GL, Pitt B, Weir MR, et al. AMETHYST-DN Investigators. Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the AMETHYST-DN randomized clinical trial. JAMA. 2015; 314(2): 151–161.
  76. Kovesdy CP, Rowan C, Conrad A, et al. Real-World evaluation of patiromer for the Treatment of hyperkalemia in Hemodialysis patients. Kidney International Reports. 2019; 4(2): 301–309.
  77. Bhattarai S, Pupillo S, Man Singh Dangol G, et al. Patiromer acetate induced hypercalcemia: an unreported adverse effect. Case Rep Nephrol. 2019: 3507407.
  78. Packham DK, Kosiborod M. Pharmacodynamics and pharmacokinetics of sodium zirconium cyclosilicate [ZS-9] in the treatment of hyperkalemia. Expert Opinion on Drug Metabolism & Toxicology. 2016; 12(5): 567–573.
  79. Kosiborod M, Rasmussen HS, Lavin P, et al. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial. JAMA. 2014; 312(21): 2223–2233.
  80. Spinowitz BS, Fishbane S, Pergola PE, et al. ZS-005 Study Investigators. Sodium zirconium cyclosilicate among individuals with hyperkalemia: a 12-month phase 3 study. Clin J Am Soc Nephrol. 2019; 14(6): 798–809.
  81. Packham DK, Rasmussen HS, Lavin PT, et al. Sodium zirconium cyclosilicate in hyperkalemia. N Engl J Med. 2015; 372(3): 222–231.
  82. Rafique Z, Peacock WF, LoVecchio F, et al. Sodium zirconium cyclosilicate (ZS-9) for the treatment of hyperkalemia. Expert Opin Pharmacother. 2015; 16(11): 1727–1734.
  83. Adamczak M, Chudek J, Zejda J. Prevalence of hypokalemia in older persons: results from the PolSenior national survey. Eur Geriatr Med. 2021.
  84. Udensi UK, Tchounwou PB. Potassium homeostasis, oxidative stress, and human disease. Int J Clin Exp Physiol. 2017; 4(3): 111–122.
  85. Dhondup T, Qian Q. Acid-Base and electrolyte disorders in patients with and without chronic kidney disease: an update. Kidney Dis (Basel). 2017; 3(4): 136–148.
  86. Kjeldsen K. Hypokalemia and sudden cardiac death. Exp Clin Cardiol. 2010; 15(4): e96–e99.
  87. Asmar A, Mohandas R, Wingo CS. A physiologic-based approach to the treatment of a patient with hypokalemia. Am J Kidney Dis. 2012; 60(3): 492–497.
  88. Kardalas E, Paschou SA, Anagnostis P, et al. Hypokalemia: a clinical update. Endocr Connect. 2018; 7(4): R135–R146.
  89. Ellison DH, Loffing J. Thiazide effects and adverse effects: insights from molecular genetics. Hypertension. 2009; 54(2): 196–202.
  90. Kostis JB, Lacy CR, Hall WD, et al. The effect of chlorthalidone on ventricular ectopic activity in patients with isolated systolic hypertension. The SHEP Study Group. Am J Cardiol. 1994; 74(5): 464–467.
  91. Punzi HA, Punzi CF. Metabolic issues in the antihypertensive and lipid-lowering heart attack trial study. Curr Hypertens Rep. 2004; 6(2): 106–110.
  92. Ernst ME, Carter BL, Zheng S, et al. Meta-analysis of dose-response characteristics of hydrochlorothiazide and chlorthalidone: effects on systolic blood pressure and potassium. Am J Hypertens. 2010; 23(4): 440–446.
  93. Roush GC, Ernst ME, Kostis JB, et al. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension. 2015; 65(5): 1041–1046.
  94. Kido H, Ohtaki Y. Torasemide (LUPRAC): a review of its pharmacological and clinical profile. Folia Pharmacologica Japonica. 2001; 118(2): 97–105.
  95. Funder JW, Carey RM, Fardella C, et al. Endocrine Society. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008; 93(9): 3266–3281.
  96. Langer D, Stryczyński Ł, Szturo A, et al. Hypertension induced by licorice. Nadciśn Tętn. 2014; 18(3): 121–126.
  97. Adamczak M, Wiecek A. Food products that may cause an increase in blood pressure. Curr Hypertens Rep. 2020; 22(1): 2.
  98. Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological effects of glycyrrhiza glabra (licorice): a review. Phytother Res. 2017; 31(11): 1635–1650.
  99. Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of licorice root (glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol. 2006; 46(3): 167–192.
  100. Gomez-Sanchez EP, Gomez-Sanchez CE. Central hypertensinogenic effects of glycyrrhizic acid and carbenoxolone. Am J Physiol. 1992; 263(6): E1125–E1130.
  101. Kosicka K, Główka FK, Kośla A, et al. Rola glikokortykosteroidów w etiologii nadciśnienia tętniczego. Nadciśn Tętn. 2010; 14(3): 208–215.
  102. Clausen T. Hormonal and pharmacological modification of plasma potassium homeostasis. Fundam Clin Pharmacol. 2010; 24(5): 595–605.
  103. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007; 18(10): 2649–2652.