English Polski
Tom 23, Nr 1-2 (2021)
Artykuł poglądowy
Opublikowany online: 2022-12-30
Wyświetlenia strony 632
Wyświetlenia/pobrania artykułu 20
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Sulodeksyd a leki wenoaktywne — naczynioprotekcyjne zastosowania glikozaminoglikanów

Tomasz Urbanek1
Chirurgia Polska 2021;23(1-2):17-33.

Streszczenie

Działanie ochronne na śródbłonek naczyniowy, hamowanie reakcji zapalnej, hamowanie ekspresji metaloproteinaz oraz produkcji wolnych rodników tlenowych, jak również inne pluripotencjalne właściwości glikozaminoglikanów otwierają nowe perspektywy w leczeniu chorób układu żylnego oraz innych patologii naczyń obwodowych dotyczących zarówno tętnic, jak i mikrokrążenia. W pracy przedstawiono przegląd aktualnej wiedzy dotyczącej klinicznego wykorzystania naczynioprotekcyjnego wpływu glikozaminoglikanów w leczeniu chorób naczyń obwodowych, ze szczególnym uwzględnieniem przewlekłej choroby żył, jak również naczyniowych powikłań cukrzycy. Zgodnie z wykonanymi badaniami obejmującymi ocenę właściwości sulodeksydu na podstawie badań z zakresu nauk podstawowych, jak również zgodnie z obserwacjami dotyczącymi skuteczności klinicznej, działanie sulodeksydu wpisuje się w obecną definicję leków wenoaktywnych. Wykazany w badaniach klinicznych wpływ na redukcję objawów podmiotowych przewlekłej choroby żył, korzystny wpływ na redukcję obrzęku kończyn, jak również poprawa wyników leczenia owrzodzeń żylnych goleni u pacjentów stosujących glikozaminoglikany korespondują z wynikami badań laboratoryjnych dowodzących wielokierunkowego wpływu sulodeksydu na wiele procesów związanych z występowaniem przewlekłej choroby żylnej i jej powikłań. Naczynioprotekcyjny wpływ glikozaminoglikanów związany między innymi z wysokim powinowactwem do komórek śródbłonka naczyniowego oraz kontrolą homeostazy w naczyniach mikrokrążenia wykazano również w innych sytuacjach klinicznych, takich jak retinopatia czy też nefropatia cukrzycowa. Dostępne doniesienia omówione w pracy opisują także korzystny wpływ sulodeksydu na wydłużenie dystansu chromania u chorych z chorobą tętnic obwodowych, jak również sugerują wiele nowych potencjalnych obszarów, w których wykorzystanie glikozaminoglikanów może przynieść potencjalne korzyści kliniczne.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Nicolaides A, Kakkos S, Baekgaard N, et al. Management of chronic venous disorders of the lower limbs. Guidelines According to Scientific Evidence. Part I. Int Angiol. 2018; 37(3): 181–254.
  2. Fowkes FG, Evans CJ, Lee AJ. Prevalence and risk factors of chronic venous insufficiency. Angiology. 2001; 52(Suppl 1): S5–15.
  3. Gohel MS, Davies AH. Pharmacological agents in the treatment of venous disease: an update of the available evidence. Curr Vasc Pharmacol. 2009; 7(3): 303–308.
  4. Carpentier PH, Maricq HR, Biro C, et al. Prevalence, risk factors, and clinical patterns of chronic venous disorders of lower limbs: a population-based study in France. J Vasc Surg. 2004; 40(4): 650–659.
  5. Jawien A. The influence of environmental factors in chronic venous insufficiency. Angiology. 2003; 54 Suppl 1: S19–S31.
  6. Rabe E, Pannier-Fischer P, Bromen K, et al. Bonner Venenstudie der Deutschen Gesellschaft für . Epidemiologische Untersuchung zur Frage der Häufigkeit und Ausprägung von chronischen Venenkrankheiten in der städtischen und ländlichen Wohnbevölkerung. Phlebologie. 2003; 32: 1–14.
  7. Urbanek T, Dorobisz A, Gabriel M, et al. Assessment of public awareness in the field of epidemiology, prevention and treatment of chronic venous diseases in Poland. Phlebological Review. 2015; 2: 45–53.
  8. Pitsch FV. CONSULT Program: interim results from the first 70 000 screened patients in 13 countries. Phlebolymphology. 2012; 19: 132–137.
  9. Howlader MH, Smith PD. Symptoms of chronic venous disease and association with systemic inflammatory markers. J Vasc Surg. 2003; 38(5): 950–954.
  10. Lurie F, Passman M, Meisner M, et al. The 2020 update of the CEAP classification system and reporting standards. J Vasc Surg Venous Lymphat Disord. 2020; 8(3): 342–352.
  11. Urbanek T, Skop B, Ziaja K, et al. Sapheno-femoral junction pathology: molecular mechanism of saphenous vein incompetence. Clin Appl Thromb Hemost. 2004; 10: 311–312.
  12. Raffetto JD. Pathophysiology of Chronic Venous Disease and Venous Ulcers. Surg Clin North Am. 2018; 98(2): 337–347.
  13. Kirsch D, Dienes HP, Küchle R, et al. Changes in the extracellular matrix of the vein wall--the cause of primary varicosis? Vasa. 2000; 29(3): 173–177.
  14. Bergan JJ, Schmid-Schönbein GW, Smith PD, et al. Chronic venous disease. N Engl J Med. 2006; 355(5): 488–498.
  15. Ortega MA, Fraile-Martínez O, García-Montero C, et al. Understanding Chronic Venous Disease: A Critical Overview of Its Pathophysiology and Medical Management. J Clin Med. 2021; 10(15).
  16. Meissner MH, Eklof Bo, Smith PC, et al. Primary chronic venous disorders. J Vasc Surg. 2007; 46 Suppl S: 54S–67S.
  17. Lim CS, Davies AH. Pathogenesis of primary varicose veins. Br J Surg. 2009; 96(11): 1231–1242.
  18. Raffetto J, Khalil R. Matrix Metalloproteinases in Venous Tissue Remodeling and Varicose Vein Formation. Curr Vasc Pharmacol. 2008; 6(3): 158–172.
  19. Nicolaides AN, Kakkos S, Eklof B, et al. Management of chronic venous disorders of the lower limbs: guidelines according to scientific evidence. Chapter 8: Venoactive Drugs. Int Angiol. 2014; 33: 126–139.
  20. Vein glossary red. M. Perrin, Institut la Conférence Hippocrate, Cedex, Francja 2018.
  21. Nicolaides A, Kakkos S, Eklof B, et al. Management of chronic venous disorders of the lower limbs - guidelines according to scientific evidence. Int Angiol. 2014; 33: 87–208.
  22. Monjotin N, Tenca G. Lymphotonic activity of Ruscus extract, hesperidin methyl chalcone and vitamin C in human lymphatic smooth muscle cells. Microvasc Res. 2022; 139: 104274.
  23. Rauly-Lestienne I, Heusler P, Cussac D, et al. Contribution of muscarinic receptors to in vitro and in vivo effects of Ruscus extract. Microvasc Res. 2017; 114: 1–11.
  24. Bergan JJ, Pascarella L, Schmid-Schönbein GW. Pathogenesis of primary chronic venous disease: Insights from animal models of venous hypertension. J Vasc Surg. 2008; 47(1): 183–192.
  25. Hoppensteadt DA, Fareed J. Pharmacological profile of sulodexide. Int Angiol. 2014; 33: 229–35.
  26. Dou H, Song A, Jia S, et al. Heparinoids Danaparoid and Sulodexide as clinically used drugs. Prog Mol Biol Transl Sci. 2019; 163: 55–74.
  27. Andreozzi GM. Sulodexide in the treatment of chronic venous disease. Am J Cardiovasc Drugs. 2012; 12(2): 73–81.
  28. Broekhuizen LN, Lemkes BA, Mooij HL, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010; 53(12): 2646–2655.
  29. Mannello F, Ligi D, Raffetto JD. Glycosaminoglycan sulodexide modulates inflammatory pathways in chronic venous disease. Int Angiol. 2014; 33(3): 236–242.
  30. Masola V, Zaza G, Onisto M, et al. Glycosaminoglycans, proteoglycans and sulodexide and the endothelium: biological roles and pharmacological effects. Int Angiol. 2014; 33(3): 243–254.
  31. Zhang X, Sun D, Song J, et al. Endothelial cell dysfunction and glycocalyx – A vicious circle. Matrix Biology. 2018; 71-72: 421–431.
  32. Ceriello A, Quatraro A, Marchi E, et al. Impaired fibrinolytic response to increased thrombin activation in type 1 diabetes mellitus: effects of the glycosaminoglycan sulodexide. Diabete Metab. 1993; 19(2): 225–229.
  33. Agrati AM, Mauro M, Savasta CA. double-blind, cross-over, placebo-controlled study of the profibrinolytic and antithrombotic effects of oral sulodexide. Adv Ther. 1992; 9: 147–155.
  34. Carroll BJ, Piazza G, Goldhaber SZ. Sulodexide in venous disease. J Thromb Haemost. 2019; 17(1): 31–38.
  35. Barbanti M, Guizzardi S, Calanni F, et al. Antithrombotic and thrombolytic activity of sulodexide in rats. Int J Clin Lab Res. 1992; 22(3): 179–184.
  36. Mauro M, Ferraro G, Palmieri GC. Profibrinolytic and antithrombotic effects of sulodexide oral administration: a double-blind, cross-over, placebo-controlled study. Curr Ther Res. 1992; 51: 342–350.
  37. Cerletti C, Rajtar G, Marchi E, et al. Interaction between glycosaminoglycans, platelets, and leukocytes. Semin Thromb Hemost. 1994; 20(3): 245–253.
  38. Borawski J, Dubowski M, Pawlak K, et al. Effect of sulodexide on plasma transforming growth factor-beta1 in healthy volunteers. Clin Appl Thromb Hemost. 2010; 16(1): 60–65.
  39. Coccheri S, Mannello F, Coccheri S, et al. Development and use of sulodexide in vascular diseases: implications for treatment. Drug Des Devel Ther. 2013; 8: 49–65.
  40. Young E, Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008; 122(6): 743–752.
  41. Urbanek T, Zbigniew K, Begier-Krasińska B, et al. Sulodexide suppresses inflammation in patients with chronic venous insufficiency. Int Angiol. 2015; 34(6): 589–596.
  42. Suminska-Jasinska K, Polubinska A, Ciszewicz M, et al. Sulodexide reduces senescence-related changes in human endothelial cells. Med Sci Monit. 2011; 17(4): CR222–CR226.
  43. Mannello F, Ligi D, Canale M, et al. Sulodexide down-regulates the release of cytokines, chemokines, and leukocyte colony stimulating factors from human macrophages: role of glycosaminoglycans in inflammatory pathways of chronic venous disease. Curr Vasc Pharmacol. 2014; 12(1): 173–185.
  44. Serra R, Gallelli L, Conti A, et al. The effects of sulodexide on both clinical and molecular parameters in patients with mixed arterial and venous ulcers of lower limbs. Drug Des Devel Ther. 2014; 8: 519–527.
  45. Ligi D, Mosti G, Croce L, et al. Chronic venous disease – Part I: Inflammatory biomarkers in wound healing. Biochim Biophys Acta (BBA) - Molecular Basis of Disease. 2016; 1862(10): 1964–1974.
  46. Raffetto JD, Yu W, Wang Xi, et al. Sulodexide Improves Contraction and Decreases Matrix Metalloproteinase-2 and -9 in Veins Under Prolonged Stretch. J Cardiovasc Pharmacol. 2020; 75(3): 211–221.
  47. Kucukguven A, Khalil RA, Kucukguven A, et al. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Curr Drug Targets. 2013; 14(3): 287–324.
  48. Saviano M, Maleti O, Liguori L, et al. Double-blind, double-dummy, randomized, multi-centre clinical assessment of the efficacy, tolerability and dose-effect relationship of sulodexide in chronic venous insufficiency. Curr Med Res Opin. 1993; 13(2): 96–108.
  49. Bignamini AA, Matuška J, Bignamini AA, et al. Sulodexide for the Symptoms and Signs of Chronic Venous Disease: A Systematic Review and Meta-analysis. Adv Ther. 2020; 37(3): 1013–1033.
  50. Cospite M, Ferrara F, Cospite V, et al. Sulodexide and the microcirculatory component in microphlebopathies. Curr Med Res Opin. 1992; 13(1): 56–60.
  51. Elleuch N, Zidi H, Bellamine Z, et al. Sulodexide in Patients with Chronic Venous Disease of the Lower Limbs: Clinical Efficacy and Impact on Quality of Life. Advances in Therapy. 2016; 33(9): 1536–1549.
  52. Guevara-Saldıvar MI, Garza-Ruiz AF, Guevara-Saldıvar MI, et al. Gonzales Ochoa A, Sulodexide for the management of chronic venous disease in clinical stages C3 and C4 Open observational study. Rev Mex Angiol. 2017; 17: 15–22.
  53. Bogachev VIu, Golovanova OV, Malysheva IN. [Efficacy of sulodexide in treatment of chronic venous insufficiency. Results of the ACCORD trial]. Angiol Sosud Khir. 2017; 23(3): 83–88.
  54. Coccheri S, Scondotto G, Agnelli G, et al. Venous arm of the SUAVIS (Sulodexide Arterial Venous Italian Study) Group. Randomised, double blind, multicentre, placebo controlled study of sulodexide in the treatment of venous leg ulcers. Thromb Haemost. 2002; 87(6): 947–952.
  55. Kucharzewski M, Franek A, Koziolek H. Treatment of venous leg ulcers with sulodexide. Phlebologie 2003; 32. ; 115: 120.
  56. Scondotto G, Aloisi D, Ferrari P, et al. Treatment of venous leg ulcers with sulodexide. Angiology. 1999; 50(11): 883–889.
  57. Wu B, Lu J, Yang M, et al. Sulodexide for treating venous leg ulcers. Cochrane Database Syst Rev. 2016(6): CD010694.
  58. Radbill B, Murphy B, LeRoith D. Rationale and strategies for early detection and management of diabetic kidney disease. Mayo Clin Proc. 2008; 83(12): 1373–1381.
  59. Rudberg S, Osterby R. Diabetic glomerulopathy in young IDDM patients. Preventive and diagnostic aspects. Horm Res. 1998; 50 Suppl 1: 17–22.
  60. Rossing P. Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep. 2006; 6(6): 479–483.
  61. Sarafidis PA, Khosla N, Bakris GL. Antihypertensive therapy in the presence of proteinuria. Am J Kidney Dis. 2007; 49(1): 12–26.
  62. Khosla N, Bakris G. Lessons learned from recent hypertension trials about kidney disease. Clin J Am Soc Nephrol. 2006; 1(2): 229–235.
  63. Timothy C. Evans, Peter Capell Nefropatia cukrzycowa. Diabetologia Praktyczna. 2001; 2: 15–20.
  64. Yung S, Chau MKM, Zhang Q, et al. Sulodexide decreases albuminuria and regulates matrix protein accumulation in C57BL/6 mice with streptozotocin-induced type I diabetic nephropathy. PLoS One. 2013; 8(1): e54501.
  65. Gambaro G, Cavazzana AO, Luzi P, et al. Glycosaminoglycans prevent morphological renal alterations and albuminuria in diabetic rats. Kidney Int. 1992; 42(2): 285–291.
  66. Kristová V, Líšková S, Sotníková R, et al. Sulodexide improves endothelial dysfunction in streptozotocin-induced diabetes in rats. Physiol Res. 2008; 57(3): 491–494.
  67. Liu YuN, Zhou J, Li T, et al. Sulodexide Protects Renal Tubular Epithelial Cells from Oxidative Stress-Induced Injury via Upregulating Klotho Expression at an Early Stage of Diabetic Kidney Disease. J Diabetes Res. 2017; 2017: 4989847.
  68. Hało A. Budowa kłębuszka nerkowego. Pol J Pathol. 2011; 1(suplemement 1): s3–7.
  69. Shu J, Zeng Ly, Lin Ky, et al. [Renal protective effects of sulodexide in diabetic rats and its anti-oxidative mechanism]. Nan Fang Yi Ke Da Xue Xue Bao. 2009; 29(4): 778–780.
  70. Gabryel B, Jarząbek K, Machnik G, et al. Superoxide dismutase 1 and glutathione peroxidase 1 are involved in the protective effect of sulodexide on vascular endothelial cells exposed to oxygen-glucose deprivation. Microvasc Res. 2016; 103: 26–35.
  71. Bignamini A, Chebil A, Gambaro G, et al. Sulodexide for Diabetic-Induced Disabilities: A Systematic Review and Meta-Analysis Adv Ther. 2021; 38: 1483–1513.
  72. Cha JJ, Kang YS, Hyun YY, et al. Sulodexide improves renal function through reduction of vascular endothelial growth factor in type 2 diabetic rats. Life Sci. 2013; 92(23): 1118–1124.
  73. Lewis EJ, Lewis JB, Greene T, et al. Collaborative Study Group. Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am J Kidney Dis. 2011; 58(5): 729–736.
  74. Packham DK, Wolfe R, Reutens AT, et al. Collaborative Study Group. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol. 2012; 23(1): 123–130.
  75. Heerspink HJL, Greene T, Tighiouart H, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019;7:128–139.
  76. Rusin P, Majsterek I. Molekularne podstawy retinopatii cukrzycowej. Postepy Hig Med Dosw. 2007; 61: 786–796.
  77. Jewusiak – Rogulska M, Kocięcki J. Epidemiologia, klasyfikacja i nowoczesne metody leczenia retinopatii cukrzycowej. Nowiny Lekarskie. 2013; 82: 253–258.
  78. Tarr J, Kaul K, Chopra M, et al. Pathophysiology of Diabetic Retinopathy Hindawi Publishing Corporation ISRN Ophthalmology. ; 2013: ID.
  79. Song JH, Chin HS, Kwon OW, et al. DRESS Research Group. Effect of sulodexide in patients with non-proliferative diabetic retinopathy: diabetic retinopathy sulodexide study (DRESS). Graefes Arch Clin Exp Ophthalmol. 2015; 253: 829–37.
  80. Rubbi F, Caramazza R, Boccia S. The effects of sulodexide on diabetic retinopathy. Minerva Cardioangiol. 2000; 48(Suppl 1): 81–2.
  81. Jo H, Jung S, Kang J, et al. Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. BMB Rep. 2014; 47: 637–642.
  82. Giurdanella G, Lazzara F, Caporarello N, et al. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Biochem Pharmacol. 2017; 142: 145–154.
  83. Raffetto JD, Calanni F, Mattana P, et al. Sulodexide promotes arterial relaxation via endothelium-dependent nitric oxide-mediated pathway Biochem Pharmacol. 2019; 166: 347–356.
  84. Radhakrishnamurthy B, Sharma C, Bhandaru RR, et al. Studies of chemical and biologic properties of a fraction of sulodexide, a heparin-like glycosaminoglycan. Atherosclerosis. 1986; 60(2): 141–149.
  85. Lauver DA, Lucches B. Sulodexide: A Renewed Interest in This Glycosaminoglycan Cardiovascular Drug Reviews. 2006; 24: 214–226.
  86. Połubińska A, Staniszewski R, Baum E, et al. Sulodexide modifies intravascular homeostasis what affects function of the endothelium. Adv Med Sci. 2013; 58(2): 304–310.
  87. Park HY, Kang S, Kim GY, et al. Inhibition of neointimal proliferation of rat carotid artery by sulodexide. J Korean Med Sci. 1997; 12(3): 210–214.
  88. Borawski J, Dubowski M, Pawlak K, et al. Sulodexide induces hepatocyte growth factor release in humans. Eur J Pharmacol. 2007; 558(1-3): 167–171.
  89. Coccheri S, Scondotto G, Agnelli G, et al. Arterial Arm of the Suavis (Sulodexide Arterial Venous Italian Study) group. Sulodexide in the treatment of intermittent claudication. Results of a randomized, double-blind, multicentre, placebo-controlled study. Eur Heart J. 2002; 23(13): 1057–1065.
  90. Moldovan C, Marc F. Farcas¸ D. Sulodexide treatment in patients with type 2 diabetes mellitus and intermittent claudication. Eur J Int Med. 2011; 22: S63.
  91. Bregovsky V, Zalesskaya A. The use of sulodexide inobliterating atherosclerosis of the lower extremities in patients with diabetes mellitus. Prob Endocrinol. 1998; 44: 16–8.
  92. Gaddi AV, Capello F, Gheorghe-Fronea OF, et al. Sulodexide improves pain-free walking distance in patients with lower extremity peripheral arterial disease: A systematic review and meta-analysis. JRSM Cardiovasc Dis. 2020; 9: 2048004020907002.
  93. Andreozzi GM, Bignamini AA, Davì G, et al. Visonà A; SURVET Study Investigators. Sulodexide for the Prevention of Recurrent Venous Thromboembolism: The Sulodexide in Secondary Prevention of Recurrent Deep Vein Thrombosis (SURVET) Study: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. Circulation. 2015; 132: 1891–1897.
  94. Luzzi R, Belcaro G, Dugall M, et al. The efficacy of sulodexide in the prevention of postthrombotic syndrome. Clin Appl Thromb Hemost. 2014; 20(6): 594–599.
  95. Goldman MP, Sadick NS, Weiss RA. Cutaneous necrosis, telangiectatic matting, and hyperpigmentation following sclerotherapy. Etiology, prevention, and treatment. Dermatol Surg. 1995; 21(1): 19–29; quiz 31.
  96. Gonzalez Ochoa AJ, Carrillo J, Manríquez D, et al. Reducing hyperpigmentation after sclerotherapy: A randomized clinical trial. J Vasc Surg Venous Lymphat Disord. 2021; 9(1): 154–162.
  97. Szolnoky G. Sulodexide may be a real alternative to low molecular weight heparins in the prevention of COVID-19 induced vascular complications. Dermatol Ther. 2020; 33(6): e14437.
  98. Magnani HN. Rationale for the Role of Heparin and Related GAG Antithrombotics in COVID-19 Infection. Clin Appl Thromb Hemost. 2021; 27: 1076029620977702.
  99. Bikdeli B, Madhavan MV, Gupta A, et al. Global COVID-19 Thrombosis Collaborative Group. Pharmacological Agents Targeting Thromboinflammation in COVID-19: Review and Implications for Future Research. Thromb Haemost. 2020; 120(7): 1004–1024.
  100. Gonzalez-Ochoa AJ, Raffetto JD, Hernández AG, et al. Sulodexide in the Treatment of Patients with Early Stages of COVID-19: A Randomized Controlled Trial. Thromb Haemost. 2021; 121(7): 944–954.
  101. Condorelli M, Chiariello M, Dagianti A, et al. IPO-V2: A prospective, multicenter, randomized, comparative clinical investigation of the effects of sulodexide in preventing cardiovascular accidents in the first year after acute myocardial infarction. J Am Coll Cardiol. 1994; 23(1): 27–34.
  102. Bikdeli B, Chatterjee S, Kirtane AJ, et al. Sulodexide versus Control and the Risk of Thrombotic and Hemorrhagic Events: Meta-Analysis of Randomized Trials. Semin Thromb Hemost. 2020; 46(8): 908–918.
  103. Gastaldi G, Pannier F, Roztočil K, et al. Chronic venous disease and diabetic microangiopathy: pathophysiology and commonalities. Int Angiol. 2021; 40(6): 457–469.
  104. Shlyakova A, Strongin L, Kudykin M, et al. Clinical and pathogenetic features of lesions of the lower extremities in patients with type 2 diabetes mellitus and chronic venous insufficiency. Diabetes mellitus. 2016; 19(3): 212–220.
  105. Matic P, Jolic S, Tanaskovic S, et al. Chronic Venous Disease and Comorbidities. Angiology. 2014; 66(6): 539–544.
  106. Galanaud JP, Bertoletti L, Amitrano M, et al. RIETE registry investigators. Predictors of Post-Thrombotic Ulcer after Acute DVT: The RIETE Registry. Thromb Haemost. 2018; 118(2): 320–328.
  107. Schiekofer S, Balletshofer B, Andrassy M, et al. Endothelial dysfunction in diabetes mellitus. Semin Thromb Hemost. 2000; 26(5): 503–511.
  108. Wiernsperger NF, Bouskela E. Microcirculation in insulin resistance and diabetes: more than just a complication. Diabetes Metab. 2003; 29(4 Pt 2): 6S77–87.
  109. Boyd RB, Burke JP, Atkin J, et al. Significance of capillary basement membrane changes in diabetes mellitus. J Am Podiatr Med Assoc. 1990; 80(6): 307–313.
  110. Thiele K, Rau M, Hartmann NUK, et al. Diabetes Mellitus and Heart Failure. Am J Med. 2017; 130(6S): S40–S50.
  111. Katorkin SE. [Significance of endothelial protection in treatment of patients with class c6 chronic venous disease and type 2 diabetes mellitus]. Angiol Sosud Khir. 2015; 21(3): 99–102, 104.
  112. Zakharova NO, Bulgakova SV, Katorkin SE, et al. [The treatment of elderly and senile patients with venous trophic ulcers and type 2 diabetes mellitus.]. Adv Gerontol. 2017; 30(6): 917–924.