Tom 23, Nr 1-2 (2021)
Artykuł poglądowy
Opublikowany online: 2022-07-27
Pobierz cytowanie

Rozwój i nowe perspektywy leczenia choroby moyamoya

Zuzanna Paluch1, Michał Szymoniuk1, Adrian Borkowski2, Krzysztof Lider1, Piotr Kamieniak3
·
Chirurgia Polska 2021;23(1-2):34-44.
Afiliacje
  1. Studenckie Koło Naukowe przy Katedrze i Klinice Neurochirurgii i Neurochirurgii Dziecięcej, Uniwersytet Medyczny w Lublinie, Lublin
  2. Studenckie Koło Naukowe przy Klinice Chirurgii Ogólnej, Małoinwazyjnej i Wieku Podeszłego, Uniwersytet Warmińsko-Mazurski w Olsztynie, Olsztyn
  3. Katedra i Klinika Neurochirurgii i Neurochirurgii Dziecięcej, Uniwersytet Medyczny w Lublinie, Lublin

dostęp płatny

Tom 23, Nr 1-2 (2021)
Prace poglądowe
Opublikowany online: 2022-07-27

Streszczenie

Choroba moyamoya jest niezwykle rzadką chorobą naczyń mózgowych, występującą głównie u dzieci
i młodych dorosłych. Charakteryzuje się przewlekłym jedno- lub obustronnym zarastaniem i zwężaniem
końcowego odcinka tętnic szyjnych wewnętrznych i ich gałęzi końcowych, co prowadzi do udaru mózgu
oraz zaburzeń neurologicznych. Podstawą leczenia choroby moyamoya jest chirurgiczna rewaskularyzacja
naczyń, mająca na celu przywrócenie prawidłowego krążenia mózgowego i zmniejszenie częstości
występowania objawów klinicznych. Chirurgiczne metody rewaskularyzacji stosowane w leczeniu choroby
moyamoya obejmują techniki bezpośrednie, pośrednie oraz metody łączące techniki bezpośrednie
z pośrednimi. Pośrednie metody rewaskularyzacji są bezpieczniejszym i łatwiejszym w przeprowadzeniu
sposobem leczenia niż metody bezpośrednie, zwłaszcza u pacjentów młodszych i u pacjentów z chorobami
współistniejącymi. Metody bezpośrednie, mimo większego ryzyka powikłań w postaci udaru czy przemijającej
hiperperfuzji mózgowej, cechują się natychmiastowym przywróceniem prawidłowego przepływu
krwi w zwężonych naczyniach. Ostatnio zauważa się wyraźną przewagę stosowania metod łączonych, na
co wskazują liczne badania.

Streszczenie

Choroba moyamoya jest niezwykle rzadką chorobą naczyń mózgowych, występującą głównie u dzieci
i młodych dorosłych. Charakteryzuje się przewlekłym jedno- lub obustronnym zarastaniem i zwężaniem
końcowego odcinka tętnic szyjnych wewnętrznych i ich gałęzi końcowych, co prowadzi do udaru mózgu
oraz zaburzeń neurologicznych. Podstawą leczenia choroby moyamoya jest chirurgiczna rewaskularyzacja
naczyń, mająca na celu przywrócenie prawidłowego krążenia mózgowego i zmniejszenie częstości
występowania objawów klinicznych. Chirurgiczne metody rewaskularyzacji stosowane w leczeniu choroby
moyamoya obejmują techniki bezpośrednie, pośrednie oraz metody łączące techniki bezpośrednie
z pośrednimi. Pośrednie metody rewaskularyzacji są bezpieczniejszym i łatwiejszym w przeprowadzeniu
sposobem leczenia niż metody bezpośrednie, zwłaszcza u pacjentów młodszych i u pacjentów z chorobami
współistniejącymi. Metody bezpośrednie, mimo większego ryzyka powikłań w postaci udaru czy przemijającej
hiperperfuzji mózgowej, cechują się natychmiastowym przywróceniem prawidłowego przepływu
krwi w zwężonych naczyniach. Ostatnio zauważa się wyraźną przewagę stosowania metod łączonych, na
co wskazują liczne badania.

Pobierz cytowanie

Słowa kluczowe

choroba moyamoya; procedury neurochirurgiczne; rewaskularyzacja mózgowa

Informacje o artykule
Tytuł

Rozwój i nowe perspektywy leczenia choroby moyamoya

Czasopismo

Chirurgia Polska

Numer

Tom 23, Nr 1-2 (2021)

Typ artykułu

Artykuł poglądowy

Strony

34-44

Opublikowany online

2022-07-27

Wyświetlenia strony

1796

Wyświetlenia/pobrania artykułu

16

DOI

10.5603/ChP.2021.0003

Rekord bibliograficzny

Chirurgia Polska 2021;23(1-2):34-44.

Słowa kluczowe

choroba moyamoya
procedury neurochirurgiczne
rewaskularyzacja mózgowa

Autorzy

Zuzanna Paluch
Michał Szymoniuk
Adrian Borkowski
Krzysztof Lider
Piotr Kamieniak

Referencje (79)
  1. Takeuchi K, Shimizu K. Hypoplasia of the bilateral internal carotid arteries. Brain Nerve. 1957; 9: 37–43.
  2. Guey S, Tournier-Lasserve E, Hervé D, et al. Moyamoya disease and syndromes: from genetics to clinical management. Appl Clin Genet. 2015; 8: 49–68.
  3. Shang S, Zhou Da, Ya J, et al. Progress in moyamoya disease. Neurosurg Rev. 2020; 43(2): 371–382.
  4. Piao J, Wu W, Yang Z, et al. Research Progress of Moyamoya Disease in Children. Int J Med Sci. 2015; 12(7): 566–575.
  5. Zhao WG, Luo Q, Jia JB, et al. Cerebral hyperperfusion syndrome after revascularization surgery in patients with moyamoya disease. Br J Neurosurg. 2013; 27(3): 321–325.
  6. Kim JS. Moyamoya Disease: Epidemiology, Clinical Features, and Diagnosis. J Stroke. 2016; 18(1): 2–11.
  7. Bang OhY, Chung JW, Kim DH, et al. Moyamoya Disease and Spectrums of RNF213 Vasculopathy. Transl Stroke Res. 2020; 11(4): 580–589.
  8. Huang S, Guo ZN, Shi M, et al. Etiology and pathogenesis of Moyamoya Disease: An update on disease prevalence. Int J Stroke. 2017; 12(3): 246–253.
  9. Zhang W, Wang X, Wang Z, et al. Effectiveness of Superficial Temporal Artery-to-Middle Cerebral Artery Anastomosis in Treating Moyamoya Disease by Reducing Endothelial Progenitor Cells. World Neurosurg. 2016; 93: 365–370.
  10. Onozuka D, Hagihara A, Nishimura K, et al. Prehospital antiplatelet use and functional status on admission of patients with non-haemorrhagic moyamoya disease: a nationwide retrospective cohort study (J-ASPECT study). BMJ Open. 2016; 6(3): e009942.
  11. Brinjikji W, Mossa-Basha M, Huston J, et al. Intracranial vessel wall imaging for evaluation of steno-occlusive diseases and intracranial aneurysms. J Neuroradiol. 2017; 44(2): 123–134.
  12. Rashad S, Fujimura M, Niizuma K, et al. Long-term follow-up of pediatric moyamoya disease treated by combined direct-indirect revascularization surgery: single institute experience with surgical and perioperative management. Neurosurg Rev. 2016; 39(4): 615–623.
  13. Hosain SA, Hughes JT, Forem SL, et al. Use of a calcium channel blocker (nicardipine HCl) in the treatment of childhood moyamoya disease. J Child Neurol. 1994; 9(4): 378–380.
  14. Dudek D, Orłowska A, Homa J, et al. Moyamoya disease and moyamoya syndrome in children – case reports and a literature review. Pol J Radiol. 2014; 79: 56–60.
  15. Hong JiM, Lee SJ, Lee JS, et al. Feasibility of Multiple Burr Hole With Erythropoietin in Acute Moyamoya Patients. Stroke. 2018; 49(5): 1290–1295.
  16. Yoon HK, Oh H, Lee HC, et al. Effect of Sevoflurane Postconditioning on the Incidence of Symptomatic Cerebral Hyperperfusion After Revascularization Surgery in Adult Patients with Moyamoya Disease. World Neurosurg. 2020; 134: e991–e99e1000.
  17. Kim JT. Effect of recombinant human EPO on the postoperative neurologic outcome in pediatric moyamoya patients, ClinicalTrials.gov Online Early https://clinicaltrials. gov/ct2/show/NCT03882060? cond=Moya+Moya+Disease&draw=2 (dostęp: 18 05. ; 2021.
  18. Zhao yN. in patients with moyamoya disease of high risk for ischemic cerebrovascular events (NICE-MMD), ClinicalTrials.gov Online Early https://clinicaltrials. gov/ct2/show/NCT04205578? cond=moyamoya&draw=3&rank=22 (dostęp: 19 12. ; 2019.
  19. Ravindran K, Wellons JC, Dewan MC. Surgical outcomes for pediatric moyamoya: a systematic review and meta-analysis. J Neurosurg Pediatr. 2019 [Epub ahead of print]: 1–10.
  20. Baaj AA, Agazzi S, Sayed ZA, et al. Surgical management of moyamoya disease: a review. Neurosurg Focus. 2009; 26(4): E7.
  21. Starke RM, Komotar RJ, Connolly ES. Optimal surgical treatment for moyamoya disease in adults: direct versus indirect bypass. Neurosurg Focus. 2009; 26(4): E8.
  22. Hayashi T, Shirane R, Fujimura M, et al. Postoperative neurological deterioration in pediatric moyamoya disease: watershed shift and hyperperfusion. J Neurosurg Pediatr. 2010; 6(1): 73–81.
  23. Jeon JP, Kim JE, Cho WS, et al. Meta-analysis of the surgical outcomes of symptomatic moyamoya disease in adults. J Neurosurg. 2018; 128(3): 793–799.
  24. Wessels L, Hecht N, Vajkoczy P. Bypass in neurosurgery-indications and techniques. Neurosurg Rev. 2019; 42(2): 389–393.
  25. Thines L, Durand A, Penchet G, et al. Microsurgical neurovascular anastomosis: the example of superficial temporal artery to middle cerebral artery bypass. Technical principles. Neurochirurgie. 2014; 60(4): 158–164.
  26. Cheikh A, Yasuhiro Y, Kasinathan S, et al. Superficial Temporal Artery: Middle Cerebral Artery Bypass, Our Series of 20 Cases, Surgical Technique and Indications with Illustrative Cases. Asian J Neurosurg. 2019; 14(3): 670–677.
  27. Gross BA, Du R. STA-MCA bypass. Acta Neurochir (Wien). 2012; 154(8): 1463–1467.
  28. Wang D, Zhu F, Fung KaM, et al. Predicting Cerebral Hyperperfusion Syndrome Following Superficial Temporal Artery to Middle Cerebral Artery Bypass based on Intraoperative Perfusion-Weighted Magnetic Resonance Imaging. Sci Rep. 2015; 5: 14140.
  29. Ma Y, Yang F, Jiao L, et al. Superficial Temporal Artery-Middle Cerebral Artery Bypass Surgery for Refractory Symptomatic Intracranial Atherosclerotic Stenosis. World Neurosurg. 2017; 104: 74–81.
  30. Horiuchi T, Tsutsumi K, Hasegawa T, et al. Rescue revision techniques for end-to-side anastomosis: Technical note. Surg Neurol Int. 2014; 5: 94.
  31. Millesi M, Wang WT, Herta J, et al. De Novo Aneurysm Formation at the Anastomosis Site Incidentally Detected 2 Years after Single-Barrel STA-MCA Bypass Surgery: Case Report and Review of the Literature. J Neurol Surg A Cent Eur Neurosurg. 2015; 76(4): 323–327.
  32. Matano F, Murai Y, Tateyama K, et al. Perioperative complications of superficial temporal artery to middle cerebral artery bypass for the treatment of complex middle cerebral artery aneurysms. Clin Neurol Neurosurg. 2013; 115(6): 718–724.
  33. Kawashima A, Kawamata T, Yamaguchi K, et al. Successful superficial temporal artery-anterior cerebral artery direct bypass using a long graft for moyamoya disease: technical note. Neurosurgery. 2010; 67(3 Suppl Operative): ons145–9; discussion ons149.
  34. Iwama T, Hashimoto N, Miyake H, et al. Superficial temporal artery to anterior cerebral artery direct anastomosis in patients with moyamoya disease. Clin Neurol Neurosurg. 1997; 99 Suppl 2(5): S134–S136.
  35. Egashira Y, Yoshimura S, Enomoto Y, et al. Single-Stage Direct Revascularization for Bilateral Anterior Cerebral Artery Regions in Pediatric Moyamoya Disease: A Technical Note. World Neurosurg. 2018; 118: 324–328.
  36. Hayashi T, Shirane R, Tominaga T. Additional surgery for postoperative ischemic symptoms in patients with moyamoya disease: the effectiveness of occipital artery-posterior cerebral artery bypass with an indirect procedure: technical case report. Neurosurgery. 2009; 64(1): E195–6; discussion E196.
  37. Kimiwada T, Hayashi T, Shirane R, et al. Posterior cerebral artery stenosis and posterior circulation revascularization surgery in pediatric patients with moyamoya disease. J Neurosurg Pediatr. 2018; 21(6): 632–638.
  38. Karasawa J, Kikuchi H, Furuse S, et al. A surgical treatment of "moyamoya" disease "encephalo-myo synangiosis". Neurol Med Chir (Tokyo). 1977; 17(1 Pt 1): 29–37.
  39. Machida T, Higuchi Y, Nakano S, et al. Sagittal splitting of the temporalis muscle for encephalo-myo-synangiosis to prevent ischemic complications due to a swollen temporalis muscle without inhibiting collateral developments in patients with moyamoya disease. J Neurosurg. 2018 [Epub ahead of print]: 1–8.
  40. Imai H, Miyawaki S, Ono H, et al. The importance of encephalo-myo-synangiosis in surgical revascularization strategies for moyamoya disease in children and adults. World Neurosurg. 2015; 83(5): 691–699.
  41. Goldsmith HS, Duckett S, Chen WF. Prevention of cerebral infarction in the dog by intact omentum. Am J Surg. 1975; 130(3): 317–320.
  42. Heil M, Schaper W. Insights into pathways of arteriogenesis. Curr Pharm Biotechnol. 2007; 8(1): 35–42.
  43. Takeuchi S, Tsuchida T, Kobayashi K, et al. Treatment of moyamoya disease by temporal muscle graft 'encephalo-myo-synangiosis'. Childs Brain. 1983; 10(1): 1–15.
  44. Yoshioka N, Tominaga S. Cerebral revascularization using muscle free flap for ischemic cerebrovascular disease in adult patients. Neurol Med Chir (Tokyo). 1998; 38(8): 464–8; discussion 467.
  45. Chen C, Ling C, Gong J, et al. Increasing the expression of microRNA-126-5p in the temporal muscle can promote angiogenesis in the chronically ischemic brains of rats subjected to two-vessel occlusion plus encephalo-myo-synangiosis. Aging (Albany NY). 2020; 12(13): 13234–13254.
  46. Patel NN, Mangano FT, Klimo P. Indirect revascularization techniques for treating moyamoya disease. Neurosurg Clin N Am. 2010; 21(3): 553–563.
  47. Touho H. Cerebral ischemia due to compression of the brain by ossified and hypertrophied muscle used for encephalomyosynangiosis in childhood moyamoya disease. Surg Neurol. 2009; 72(6): 725–727.
  48. Kanamori F, Araki Y, Kanamori F, et al. Brain Compression by Encephalo-Myo-Synangiosis is a Risk Factor for Transient Neurological Deficits After Surgical Revascularization in Pediatric Patients with Moyamoya Disease. World Neurosurg. 2020; 133: e558–e566.
  49. Takeuchi S, Nawashiro H, Uozumi Y, et al. Chronic subdural hematoma associated with moyamoya disease. Asian J Neurosurg. 2014; 9(3): 165–167.
  50. Qin B, Wang L, Gao L, et al. Recovered bone flap tilting after encephalo-myo-synangiosis: A complication. Clin Neurol Neurosurg. 2019; 178: 13–19.
  51. Sasagasako T, Ishizaki R, Tashiro Y. Successful Surgical Management of Traumatic Intracranial Hemorrhaging After Revascularization Surgery for Moyamoya Vasculopathy: A Case Report and Review of Literature. World Neurosurg. 2020; 137: 24–28.
  52. Matsushima T, Fujiwara S, Nagata S, et al. Surgical treatment for paediatric patients with moyamoya disease by indirect revascularization procedures (EDAS, EMS, EMAS). Acta Neurochir (Wien). 1989; 98(3-4): 135–140.
  53. Griessenauer CJ, Lebensburger JD, Chua MH, et al. Encephaloduroarteriosynangiosis and encephalomyoarteriosynangiosis for treatment of moyamoya syndrome in pediatric patients with sickle cell disease. J Neurosurg Pediatr. 2015; 16(1): 64–73.
  54. Matsushima T, Inoue T, Katsuta T, et al. An indirect revascularization method in the surgical treatment of moyamoya disease--various kinds of indirect procedures and a multiple combined indirect procedure. Neurol Med Chir (Tokyo). 1998; 38 Suppl: 297–302.
  55. Kennedy BC, McDowell MM, Yang PH, et al. Pial synangiosis for moyamoya syndrome in children with sickle cell anemia: a comprehensive review of reported cases. Neurosurg Focus. 2014; 36(1): E12.
  56. Alamri A, Hever P, Cheserem J, et al. Encephaloduroateriosynangiosis (EDAS) in the management of Moyamoya syndrome in children with sickle cell disease. Br J Neurosurg. 2019; 33(2): 161–164.
  57. Scala M, Vennarini S, Garrè ML, et al. Radiation-Induced Moyamoya Syndrome After Proton Therapy in Child with Clival Chordoma: Natural History and Surgical Treatment. World Neurosurg. 2019; 123: 306–309.
  58. Ogawa S, Ogata T, Shimada H, et al. Acceleration of blood flow as an indicator of improved hemodynamics after indirect bypass surgery in Moyamoya disease. Clin Neurol Neurosurg. 2017; 160: 92–95.
  59. Liu P, Lv XL, Liu AH, et al. Intracranial Aneurysms Associated with Moyamoya Disease in Children: Clinical Features and Long-Term Surgical Outcome. World Neurosurg. 2016; 94: 513–520.
  60. Kim DS, Kye DK, Cho KS, et al. Combined direct and indirect reconstructive vascular surgery on the fronto-parieto-occipital region in moyamoya disease. Clin Neurol Neurosurg. 1997; 99 Suppl 2: S137–S141.
  61. Ozgur BM, Aryan HE, Levy ML. Indirect revascularisation for paediatric moyamoya disease: the EDAMS technique. J Clin Neurosci. 2006; 13(1): 105–108.
  62. Hazra DN, Ghosh AK. Complications following Encephalo-Duro-Arterio-Myo-Synangiosis in a case of Moyamoya disease. Brain Circ. 2020; 6(1): 57–59.
  63. Endo M, Kawano N, Miyaska Y, et al. Cranial burr hole for revascularization in moyamoya disease. J Neurosurg. 1989; 71(2): 180–185.
  64. Mirone G, Cicala D, Meucci C, et al. Multiple Burr-Hole Surgery for the Treatment of Moyamoya Disease and Quasi-Moyamoya Disease in Children: Preliminary Surgical and Imaging Results. World Neurosurg. 2019; 127: e843–e855.
  65. Zhao Y, Yu S, Lu J, et al. Direct Bypass Surgery Vs. Combined Bypass Surgery for Hemorrhagic Moyamoya Disease: A Comparison of Angiographic Outcomes. Front Neurol. 2018; 9: 1121.
  66. Arikan F, Vilalta J, Torne R, et al. Rapid resolution of brain ischemic hypoxia after cerebral revascularization in moyamoya disease. Neurosurgery. 2015; 76(3): 302–12; discussion 312.
  67. Zhao J, Liu H, Zou Y, et al. Clinical and angiographic outcomes after combined direct and indirect bypass in adult patients with moyamoya disease: A retrospective study of 76 procedures. Exp Ther Med. 2018; 15(4): 3570–3576.
  68. Liu JJ, Steinberg GK. Direct Versus Indirect Bypass for Moyamoya Disease. Neurosurg Clin N Am. 2017; 28(3): 361–374.
  69. Kazumata K, Ito M, Tokairin K, et al. The frequency of postoperative stroke in moyamoya disease following combined revascularization: a single-university series and systematic review. J Neurosurg. 2014; 121(2): 432–440.
  70. Nakashima H, Meguro T, Kawada S, et al. Long-term results of surgically treated moyamoya disease. Clin Neurol Neurosurg. 1997; 99 Suppl 2: S156–S161.
  71. Mizoi K, Kayama T, Yoshimoto T, et al. Indirect revascularization for moyamoya disease: Is there a beneficial effect for adult patients? Surgical Neurology. 1996; 45(6): 541–548.
  72. Qian C, Yu X, Li J, et al. The Efficacy of Surgical Treatment for the Secondary Prevention of Stroke in Symptomatic Moyamoya Disease: A Meta-Analysis. Medicine (Baltimore). 2015; 94(49): e2218.
  73. Abla AA, Gandhoke G, Clark JC, et al. Surgical outcomes for moyamoya angiopathy at barrow neurological institute with comparison of adult indirect encephaloduroarteriosynangiosis bypass, adult direct superficial temporal artery-to-middle cerebral artery bypass, and pediatric bypass: 154 revascularization surgeries in 140 affected hemispheres. Neurosurgery. 2013; 73(3): 430–439.
  74. Chung Y, Lee SHo, Choi SK. Fundamental Basis of Scalp Layering Techniques to Protect Against Wound Infection: A Comparative Study Between Conventional and In-to-Out Dissection of the Superficial Temporal Artery. World Neurosurg. 2017; 97: 304–311.
  75. Takanari K, Araki Y, Okamoto S, et al. Operative wound-related complications after cranial revascularization surgeries. J Neurosurg. 2015; 123(5): 1145–1150.
  76. Yu J, Shi L, Guo Y, et al. Progress on Complications of Direct Bypass for Moyamoya Disease. Int J Med Sci. 2016; 13(8): 578–587.
  77. Acker G, Schlinkmann N, Fekonja L, et al. Wound healing complications after revascularization for moyamoya vasculopathy with reference to different skin incisions. Neurosurg Focus. 2019; 46(2): E12.
  78. Acker G, Fekonja L, Vajkoczy P. Surgical Management of Moyamoya Disease. Stroke. 2018; 49(2): 476–482.
  79. Acker G, Goerdes S, Schneider UC, et al. Distinct clinical and radiographic characteristics of moyamoya disease amongst European Caucasians. Eur J Neurol. 2015; 22(6): 1012–1017.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Czasopismo Chirurgia Polska dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest VM Media Group sp. z o.o, Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl