English Polski
Tom 25, Nr 1-2 (2023)
Artykuł poglądowy
Opublikowany online: 2024-09-13

dostęp otwarty

Wyświetlenia strony 144
Wyświetlenia/pobrania artykułu 240
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Diagnostyka i leczenie glejaków drogi wzrokowej. Przegląd piśmiennictwa

Zuzanna Paluch12, Michał Szymoniuk2, Michalina Pytka3, Paweł Kozyra4, Anna Drelich-Zbroja5
DOI: 10.5603/chp.95315
Chirurgia Polska 2023;25(1-2):38-47.

Streszczenie

Glejaki drogi wzrokowej (OPGs, optic pathway gliomas) to pierwotne nowotwory ośrodkowego układu
nerwowego o niskim stopniu złośliwości, występujące najczęściej u dzieci oraz u młodych dorosłych.
OPG może pojawiać się sporadycznie lub w przebiegu neurofibromatozy typu 1. Obraz kliniczny może
różnić się w zależności od lokalizacji i wielkości guza. OPG może zarówno przebiegać bezobjawowo, jak
i dawać objawy okulistyczne, takie jak jednostronny wytrzeszcz lub zaburzenia widzenia. Chociaż glejaki
drogi wzrokowej są guzami o niskim stopniu złośliwości, mogą być agresywne, a ich leczenie często
stanowi wyzwanie. Postępowanie w przypadku tych guzów jest wysoce zindywidualizowane. Zależy ono
od charakteru i rozległości zmiany oraz funkcji wzrokowej. Może obejmować obserwację zachowawczą,
chemioterapię, radioterapię lub interwencję chirurgiczną.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Farazdaghi MK, Katowitz WR, Avery RA. Current treatment of optic nerve gliomas. Curr Opin Ophthalmol. 2019; 30(5): 356–363.
  2. Rasool N, Odel JG, Kazim M. Optic pathway glioma of childhood. Curr Opin Ophthalmol. 2017; 28(3): 289–295.
  3. Park ES, Park JB, Ra YS. Pediatric glioma at the optic pathway and thalamus. J Korean Neurosurg Soc. 2018; 61(3): 352–362.
  4. Nair AG, Pathak RS, Iyer VR, et al. Optic nerve glioma: an update. Int Ophthalmol. 2014; 34(4): 999–1005.
  5. Campen CJ, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1. J Child Neurol. 2018; 33(1): 73–81.
  6. Aihara Y, Chiba K, Eguchi S, et al. Pediatric optic pathway/hypothalamic glioma. Neurol Med Chir (Tokyo). 2018; 58(1): 1–9.
  7. Dodge HW, Love JG, Craig WM. Gliomas of the optic nerves. AMA Arch Neurol Psychiatry. 1958; 79(6): 607–621.
  8. Fried I, Tabori U, Tihan T, et al. Optic pathway gliomas: a review. CNS Oncol. 2013; 2(2): 143–159.
  9. Shapey J, Danesh-Meyer HV, Kaye AH. Diagnosis and management of optic nerve glioma. J Clin Neurosci. 2011; 18(12): 1585–1591.
  10. Purohit BS, Vargas MI, Ailianou A, et al. Orbital tumours and tumour-like lesions: exploring the armamentarium of multiparametric imaging. Insights Imaging. 2016; 7(1): 43–68.
  11. Cassina M, Frizziero L, Opocher E, et al. Optic pathway glioma in type 1 neurofibromatosis: review of its pathogenesis, diagnostic assessment, and treatment recommendations. Cancers (Basel). 2019; 11(11).
  12. Sellmer L, Farschtschi S, Marangoni M, et al. Serial MRIs provide novel insight into natural history of optic pathway gliomas in patients with neurofibromatosis 1. Orphanet J Rare Dis. 2018; 13(1): 62.
  13. Listernick R, Ferner RE, Liu GT, et al. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007; 61(3): 189–198.
  14. Trevisson E, Cassina M, Opocher E, et al. Natural history of optic pathway gliomas in a cohort of unselected patients affected by Neurofibromatosis 1. J Neurooncol. 2017; 134(2): 279–287.
  15. Blanchard G, Lafforgue MP, Lion-François L, et al. NF France network. Systematic MRI in NF1 children under six years of age for the diagnosis of optic pathway gliomas. Study and outcome of a French cohort. Eur J Paediatr Neurol. 2016; 20(2): 275–281.
  16. Listernick R, Louis DN, Packer RJ, et al. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol. 1997; 41(2): 143–149.
  17. Evans DG, Salvador H, Chang VY, et al. Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clin Cancer Res. 2017; 23(12): e46–e53.
  18. Prada CE, Hufnagel RB, Hummel TR, et al. The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1. J Pediatr. 2015; 167(4): 851–856.e1.
  19. Chung EM, Specht CS, Schroeder JW. From the archives of the AFIP: Pediatric orbit tumors and tumorlike lesions: neuroepithelial lesions of the ocular globe and optic nerve. Radiographics. 2007; 27(4): 1159–1186.
  20. Becker M, Masterson K, Delavelle J, et al. Imaging of the optic nerve. Eur J Radiol. 2010; 74(2): 299–313.
  21. Cummings TJ, Provenzale JM, Hunter SB, et al. Gliomas of the optic nerve: histological, immunohistochemical (MIB-1 and p53), and MRI analysis. Acta Neuropathol. 2000; 99(5): 563–570.
  22. Barkovich AJ. Pediatric neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia 2005: 875–884.
  23. Weber AL, Caruso P, Sabates NR. The optic nerve: radiologic, clinical, and pathologic evaluation. Neuroimaging Clin N Am. 2005; 15(1): 175–201.
  24. Pungavkar SA, Lawande MA, Patkar DP, et al. Bilateral optic pathway glioma with intracranial calcification: magnetic resonance imaging and magnetic resonance spectroscopy findings. Australas Radiol. 2005; 49(6): 489–492.
  25. Pepin SM, Lessell S. Anterior visual pathway gliomas: The last 30 years. Semin Ophthalmol. 2006; 21(3): 117–124.
  26. Miller NR. Primary tumours of the optic nerve and its sheath. Eye (Lond). 2004; 18(11): 1026–1037.
  27. Wilhelm H. Primary optic nerve tumours. Curr Opin Neurol. 2009; 22(1): 11–18.
  28. Dutton JJ. Gliomas of the anterior visual pathway. Surv Ophthalmol. 1994; 38(5): 427–452.
  29. Ge M, Li S, Wang L, et al. The role of diffusion tensor tractography in the surgical treatment of pediatric optic chiasmatic gliomas. J Neurooncol. 2015; 122(2): 357–366.
  30. Yeom KW, Lober RM, Andre JB, et al. Prognostic role for diffusion-weighted imaging of pediatric optic pathway glioma. J Neurooncol. 2013; 113(3): 479–483.
  31. Parrozzani R, Clementi M, Kotsafti O, et al. Optical coherence tomography in the diagnosis of optic pathway gliomas. Invest Ophthalmol Vis Sci. 2013; 54(13): 8112–8118.
  32. Parrozzani R, Miglionico G, Leonardi F, et al. Correlation of peripapillary retinal nerve fibre layer thickness with visual acuity in paediatric patients affected by optic pathway glioma. Acta Ophthalmol. 2018; 96(8): e1004–e1009.
  33. Avery RA, Mansoor A, Idrees R, et al. Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1. Neurology. 2016; 87(23): 2403–2407.
  34. Avery RA, Cnaan A, Schuman JS, et al. Longitudinal change of circumpapillary retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol. 2015; 160(5): 944–952.e1.
  35. Liu Y, Hao X, Liu W, et al. Analysis of survival prognosis for children with symptomatic optic pathway gliomas who received surgery. World Neurosurg. 2018; 109: e1–e15.
  36. Avery RA, Fisher MJ, Liu GT. Optic pathway gliomas. J Neuroophthalmol. 2011; 31(3): 269–278.
  37. Liu GT. Optic gliomas of the anterior visual pathway. Curr Opin Ophthalmol. 2006; 17(5): 427–431.
  38. Borghei-Razavi H, Shibao S, Schick U. Prechiasmatic transection of the optic nerve in optic nerve glioma: technical description and surgical outcome. Neurosurg Rev. 2017; 40(1): 135–141.
  39. Reddy AT, Witek K. Neurologic complications of chemotherapy for children with cancer. Curr Neurol Neurosci Rep. 2003; 3(2): 137–142.
  40. Fisher MJ, Loguidice M, Gutmann DH, et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol. 2012; 14(6): 790–797.
  41. Moreno L, Bautista F, Ashley S, et al. Does chemotherapy affect the visual outcome in children with optic pathway glioma? A systematic review of the evidence. Eur J Cancer. 2010; 46(12): 2253–2259.
  42. Pollack IF. Multidisciplinary management of childhood brain tumors: a review of outcomes, recent advances, and challenges. J Neurosurg Pediatr. 2011; 8(2): 135–148.
  43. Koutourousiou M, Gardner PA, Kofler JK, et al. Rare infundibular tumors: clinical presentation, imaging findings, and the role of endoscopic endonasal surgery in their management. J Neurol Surg B Skull Base. 2013; 74(1): 1–11.
  44. Walker DA, Liu J, Kieran M, et al. CPN Paris 2011 Conference Consensus Group. A multi-disciplinary consensus statement concerning surgical approaches to low-grade, high-grade astrocytomas and diffuse intrinsic pontine gliomas in childhood (CPN Paris 2011) using the Delphi method. Neuro Oncol. 2013; 15(4): 462–468.
  45. El Beltagy MA, Reda M, Enayet A, et al. Treatment and outcome in 65 children with optic pathway gliomas. World Neurosurg. 2016; 89: 525–534.
  46. Goodden J, Pizer B, Pettorini B, et al. The role of surgery in optic pathway/hypothalamic gliomas in children. J Neurosurg Pediatr. 2014; 13(1): 1–12.
  47. Mohammad AEN. En-Bloc resection versus resection after evacuation and suction of the content for orbital optic nerve glioma causing visual loss and disfiguring proptosis. Ophthalmic Plast Reconstr Surg. 2020; 36(4): 399–402.
  48. Kaderbhai J, Lo W, Rodrigues D, et al. Craniofacial approaches to pediatric orbital tumors. J Craniofac Surg. 2019; 30(4): 1198–1200.
  49. van Baarsen K, Roth J, Serova N, et al. Optic pathway-hypothalamic glioma hemorrhage: a series of 9 patients and review of the literature. J Neurosurg. 2018; 129(6): 1407–1415.
  50. Kondo A, Akiyama O, Suzuki M, et al. A novel surgical approach for intraorbital optic nerve tumors. J Clin Neurosci. 2019; 59: 362–366.
  51. Stella I, Helleringer M, Joud A, et al. Optic pathway tumor in children: toward a new classification for neurosurgical use. Neurochirurgie. 2021; 67(4): 336–345.
  52. Shofty B, Ben-Sira L, Kesler A, et al. Optic pathway gliomas. Adv Tech Stand Neurosurg. 2015; 42: 123–146.
  53. Sievert AJ, Fisher MJ. Pediatric low-grade gliomas. J Child Neurol. 2009; 24(11): 1397–1408.
  54. Ahn Y, Cho BK, Kim SK, et al. Optic pathway glioma: outcome and prognostic factors in a surgical series. Childs Nerv Syst. 2006; 22(9): 1136–1142.
  55. Mishra MV, Andrews DW, Glass J, et al. Characterization and outcomes of optic nerve gliomas: a population-based analysis. J Neurooncol. 2012; 107(3): 591–597.
  56. Shriver EM, Ragheb J, Tse DT. Combined transcranial-orbital approach for resection of optic nerve gliomas: a clinical and anatomical study. Ophthalmic Plast Reconstr Surg. 2012; 28(3): 184–91.
  57. Numa Y, Kawamoto K. Frontozygomatic approach to intraorbital tumors. Skull Base. 2007; 17(5): 303–310.
  58. Zoli M, Mazzatenta D, Valluzzi A, et al. Expanding indications for the extended endoscopic endonasal approach to hypothalamic gliomas: preliminary report. Neurosurg Focus. 2014; 37(4): E11.
  59. Somma T, Solari D, Beer-Furlan A, et al. Endoscopic endonasal management of rare sellar lesions: clinical and surgical experience of 78 cases and review of the literature. World Neurosurg. 2017; 100: 369–380.
  60. Bin Abdulqader S, Al-Ajlan Z, Albakr A, et al. Endoscopic transnasal resection of optic pathway pilocytic astrocytoma. Childs Nerv Syst. 2019; 35(1): 73–81.
  61. Graffeo CS, Dietrich AR, Grobelny B, et al. A panoramic view of the skull base: systematic review of open and endoscopic endonasal approaches to four tumors. Pituitary. 2014; 17(4): 349–356.
  62. Kasemsiri P, Carrau RL, Ditzel Filho LFS, et al. Advantages and limitations of endoscopic endonasal approaches to the skull base. World Neurosurg. 2014; 82(6 Suppl): S12–S21.
  63. Stapleton AL, Tyler-Kabara EC, Gardner PA, et al. Risk factors for cerebrospinal fluid leak in pediatric patients undergoing endoscopic endonasal skull base surgery. Int J Pediatr Otorhinolaryngol. 2017; 93: 163–166.
  64. Chivukula S, Koutourousiou M, Snyderman CH, et al. Endoscopic endonasal skull base surgery in the pediatric population. J Neurosurg Pediatr. 2013; 11(3): 227–241.
  65. Giovannetti F, Mussa F, Priore P, et al. Endoscopic endonasal skull base surgery in pediatric patients. A single center experience. J Craniomaxillofac Surg. 2018; 46(12): 2017–2021.
  66. Ater J. Results of COG protocol A9952 : a randomized phase 3 study of two chemotherapy regimens for incompletely resected low-grade glioma in young children. Neuro Oncol. 2008; 10: 451.
  67. Ater JL, Xia C, Mazewski CM, et al. Nonrandomized comparison of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive low-grade glioma: a report from the children's oncology group. Cancer. 2016; 122(12): 1928–1936.
  68. Bouffet E, Jakacki R, Goldman S, et al. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J Clin Oncol. 2012; 30(12): 1358–1363.
  69. Lassaletta A, Scheinemann K, Zelcer SM, et al. Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: a Canadian pediatric brain tumor consortium study. J Clin Oncol. 2016; 34(29): 3537–3543.
  70. Devereux S, Selassie TG, Vaughan Hudson G, et al. Leukaemia complicating treatment for Hodgkin's disease: the experience of the British National Lymphoma Investigation. BMJ. 1990; 301(6760): 1077–1080.
  71. Leone G, Mele L, Pulsoni A, et al. The incidence of secondary leukemias. Haematologica. 1999; 84(10): 937–945.
  72. Perry JR, Brown MT, Gockerman JP. Acute leukemia following treatment of malignant glioma. J Neurooncol. 1998; 40(1): 39–46.
  73. Maris JM, Wiersma SR, Mahgoub N, et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer. 1997; 79(7): 1438–1446.
  74. Matsui I, Tanimura M, Kobayashi N, et al. Neurofibromatosis type 1 and childhood cancer. Cancer. 1993; 72(9): 2746–2754, doi: 10.1002/1097-0142(19931101)72:9<2746::aid-cncr2820720936>3.0.co;2-w.
  75. Shannon KM, O'Connell P, Martin GA, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994; 330(9): 597–601.
  76. Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994; 70(5): 969–972.
  77. Massimino M, Spreafico F, Cefalo G, et al. High response rate to cisplatin/etoposide regimen in childhood low-grade glioma. J Clin Oncol. 2002; 20(20): 4209–4216.
  78. Cardellicchio S, Bacci G, Farina S, et al. Low-dose cisplatin-etoposide regimen for patients with optic pathway glioma: a report of four cases and literature review. Neuropediatrics. 2014; 45(1): 42–49.
  79. Cappellano AM, Petrilli AS, da Silva NS, et al. Single agent vinorelbine in pediatric patients with progressive optic pathway glioma. J Neurooncol. 2015; 121(2): 405–412.
  80. Gururangan S, Fisher MJ, Allen JC, et al. Temozolomide in children with progressive low-grade glioma. Neuro Oncol. 2007; 9(2): 161–168.
  81. Banerjee A, Jakacki RI, Onar-Thomas A, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol. 2017; 19(8): 1135–1144.
  82. Bartels U, Hawkins C, Jing Ma, et al. Vascularity and angiogenesis as predictors of growth in optic pathway/hypothalamic gliomas. J Neurosurg. 2006; 104(5 Suppl): 314–320.
  83. Presta LG, Chen H. O’Connor SJ, at al. Humanization of an Anti-Vascular Endothelial Growth Factor Monoclonal Antibody for the Therapy of Solid Tumors and Other Disorders. Cancer Res. 1997; 57(20): 4593–4599.
  84. Gururangan S, Fangusaro J, Poussaint TY, et al. Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas--a Pediatric Brain Tumor Consortium Study. Neuro Oncol. 2014; 16(2): 310–317.
  85. Hwang EI, Jakacki RI, Fisher MJ, et al. Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas. Pediatr Blood Cancer. 2013; 60(5): 776–782.
  86. Falsini B, Chiaretti A, Rizzo D, et al. Nerve growth factor improves visual loss in childhood optic gliomas: a randomized, double-blind, phase II clinical trial. Brain. 2016; 139(Pt 2): 404–414.
  87. Warrington NM, Gianino SM, Jackson E, et al. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 2010; 70(14): 5717–5727.