English Polski
Tom 21, Nr 1-2 (2019)
Artykuł poglądowy
Opublikowany online: 2021-03-04

dostęp otwarty

Wyświetlenia strony 3472
Wyświetlenia/pobrania artykułu 441
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Analiza czynników wpływających na progresję i pęknięcie tętniaka aorty brzusznej

Maciej Juśko1, Michał Buczek1, Tomasz Urbanek1, Wacław Kuczmik1
Chirurgia Polska 2019;21(1-2):1-7.

Streszczenie

Pęknięty tętniak aorty brzusznej jest poważnym problemem zdrowotnym dotyczącym szerokiej grupy pacjentów na całym świecie. Nawet przy dobrej dostępności do służby zdrowia oraz nowoczesnych technikach leczenia zjawisko to cechuje się licznymi poważnymi następstwami zdrowotnymi i wysoką śmiertelnością. Pomimo wielu lat doświadczeń w leczeniu tętniaków aorty i przeprowadzenia licznych badań dotyczących patomechanizmu ich powstawania i dalszego rozwoju, zjawisko pęknięcia nadal nie zostało do końca wytłumaczone. Pełne zrozumienie mechanizmów zarówno fizycznych, jak i molekularnych będących przyczyną pęknięcia utrudnia ich złożony i wieloczynnikowy charakter. Z powodu braku pełnego zrozumienia zjawiska nie udało się również ustalić dokładnych czynników predykcyjnych dla pęknięcia tętniaka aorty, jednak w ciągu ostatnich lat dokonano wielu cennych obserwacji bez wątpienia zbliżających lekarzy do wyjaśnienia powyższego problemu. Niniejsza praca ma na celu poddanie analizie i usystematyzowanie wyników dotychczasowych badań dotyczących czynników wpływających na powstawanie pęknięcia w obrębie tętniaka aorty brzusznej.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Chaikof EL, Dalman RL, Eskandari MK, et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018; 67(1): 2–77.e2.
  2. Moll FL, Powell JT, Fraedrich G, et al. European Society for Vascular Surgery. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011; 41 Suppl 1: S1–S58.
  3. Galyfos G, Sigala F, Mpananis K, et al. Small abdominal aortic aneurysms: Has anything changed so far? Trends Cardiovasc Med. 2020; 30(8): 500–504.
  4. Brown PM, Zelt DT, Sobolev B. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J Vasc Surg. 2003; 37(2): 280–284.
  5. Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann Surg. 1999; 230(3): 289–96; discussion 296.
  6. Limet R, Sakalihassan N, Albert A. Determination of the expansion rate and incidence of ruptur of abdominal aortic aneurysms. J Vasc Surg. 1991; 14(4): 540–548.
  7. Cronenwett JL. Variables that affect the expansion rate and rupture of abdominal aortic aneurysms. Ann N Y Acad Sci. 1996; 800: 56–67.
  8. Nevitt MP, Ballard DJ, Hallett JW. Prognosis of abdominal aortic aneurysms. A population-based study. N Engl J Med. 1989; 321(15): 1009–1014.
  9. Sterpetti AV, Cavallaro A, Cavallari N, et al. Factors influencing the rupture of abdominal aortic aneurysms. Surg Gynecol Obstet. 1991; 173(3): 175–178.
  10. Cronenwett JL, Murphy TF, Zelenock GB, et al. Actuarial analysis of variables associated with rupture of small abdominal aortic aneurysms. Surgery. 1985; 98(3): 472–483.
  11. Flessenkaemper IH, Loddenkemper R, Roll S, et al. Screening of COPD patients for abdominal aortic aneurysm. Int J Chron Obstruct Pulmon Dis. 2015; 10: 1085–1091.
  12. Takagi H, Umemoto T. ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. A Meta-Analysis of the Association of Chronic Obstructive Pulmonary Disease with Abdominal Aortic Aneurysm Presence. Ann Vasc Surg. 2016; 34: 84–94.
  13. Takagi H, Umemoto T. No association of chronic obstructive pulmonary disease with abdominal aortic aneurysm growth. Heart and Vessels. 2016; 31(11): 1806–1816.
  14. Lederle FA, Johnson GR, Wilson SE, et al. Prevalence and associations of abdominal aortic aneurysm detected through screening. Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group. Ann Intern Med. 1997; 126(6): 441–449.
  15. Lederle FA, Wilson SE, Johnson GR, et al. Aneurysm Detection and Management Veterans Affairs Cooperative Study Group. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 2002; 346(19): 1437–1444.
  16. Patel K, Zafar MA, Ziganshin BA, et al. Diabetes Mellitus: Is It Protective against Aneurysm? A Narrative Review. Cardiology. 2018; 141(2): 107–122.
  17. Aune D, Schlesinger S, Norat T, et al. Diabetes mellitus and the risk of abdominal aortic aneurysm: A systematic review and meta-analysis of prospective studies. J Diabetes Complications. 2018; 32(12): 1169–1174.
  18. Raffort J, Lareyre F, Clément M, et al. Diabetes and aortic aneurysm: current state of the art. Cardiovasc Res. 2018; 114(13): 1702–1713.
  19. Stringfellow MM, Lawrence PF, Stringfellow RG. The influence of aorta-aneurysm geometry upon stress in the aneurysm wall. J Surg Res. 1987; 42(4): 425–433.
  20. Choke E, Cockerill G, Wilson WRW, et al. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg. 2005; 30(3): 227–244.
  21. Mower WR, Baraff LJ, Sneyd J. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture. J Surg Res. 1993; 55(2): 155–161.
  22. Elger DF, Blackketter DM, Budwig RS, et al. The influence of shape on the stresses in model abdominal aortic aneurysms. J Biomech Eng. 1996; 118(3): 326–332.
  23. Raghavan ML, Vorp DA, Federle MP, et al. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg. 2000; 31(4): 760–769.
  24. Venkatasubramaniam AK, Fagan MJ, Mehta T, et al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2004; 28(2): 168–176.
  25. Vallabhaneni SR, Gilling-Smith GL, How TV, et al. Heterogeneity of tensile strength and matrix metalloproteinase activity in the wall of abdominal aortic aneurysms. J Endovasc Ther. 2004; 11(4): 494–502.
  26. Thompson RW. Reflections on the pathogenesis of abdominal aortic aneurysms. Cardiovasc Surg. 2002; 10(4): 389–394.
  27. Wills A, Thompson MM, Crowther M, et al. Pathogenesis of abdominal aortic aneurysms--cellular and biochemical mechanisms. Eur J Vasc Endovasc Surg. 1996; 12(4): 391–400.
  28. Baxter BT, Davis VA, Minion DJ, et al. Abdominal aortic aneurysms are associated with altered matrix proteins of the nonaneurysmal aortic segments. J Vasc Surg. 1994; 19(5): 797–802; discussion 803.
  29. Menashi S, Campa JS, Greenhalgh RM, et al. Collagen in abdominal aortic aneurysm: typing, content, and degradation. J Vasc Surg. 1987; 6(6): 578–582.
  30. Dobrin PB, Baker WH, Gley WC. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch Surg. 1984; 119(4): 405–409.
  31. Maguire EM, Pearce SWA, Xiao R, et al. Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel). 2019; 12(3).
  32. Giraud A, Zeboudj L, Vandestienne M, et al. Gingival fibroblasts protect against experimental abdominal aortic aneurysm development and rupture through tissue inhibitor of metalloproteinase-1 production. Cardiovasc Res. 2017; 113(11): 1364–1375.
  33. Lutshumba J, Liu S, Zhong Yu, et al. Deletion of BMAL1 in Smooth Muscle Cells Protects Mice From Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol. 2018; 38(5): 1063–1075.
  34. Hance KA, Tataria M, Ziporin SJ, et al. Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and the 67-kD cell surface elastin receptor. J Vasc Surg. 2002; 35(2): 254–261.
  35. Steinmetz EF, Buckley C, Thompson RW. Prospects for the medical management of abdominal aortic aneurysms. Vasc Endovascular Surg. 2003; 37(3): 151–163.
  36. Lacraz S, Nicod LP, Chicheportiche R, et al. IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Invest. 1995; 96(5): 2304–2310.
  37. Maegdefessel L, Spin JM, Raaz U, et al. miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun. 2014; 5: 5214.
  38. Tang W, Yao Lu, Hoogeveen RC, et al. The Association of Biomarkers of Inflammation and Extracellular Matrix Degradation With the Risk of Abdominal Aortic Aneurysm: The ARIC Study. Angiology. 2019; 70(2): 130–140.
  39. MA3RS Study Investigators.: Aortic Wall Inflammation Predicts Abdominal Aortic Aneurysm Expansion, Rupture, and Need for Surgical Repair. Circulation. 2017. ; 136(9): 787–797.
  40. Martino EDi, Mantero S, Inzoli F, et al. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: Experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg. 1998; 15(4): 290–299.
  41. Domonkos A, Staffa R, Kubíček L. Effect of intraluminal thrombus on growth rate of abdominal aortic aneurysms. Int Angiol. 2019; 38(1): 39–45.
  42. Schurink G, Baalen JMv, Visser M, et al. Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J Vasc Surg. 2000; 31(3): 501–506.
  43. Vorp DA, Wang DH, Webster MW, et al. Effect of intraluminal thrombus thickness and bulge diameter on the oxygen diffusion in abdominal aortic aneurysm. J Biomech Eng. 1998; 120(5): 579–583.
  44. Vorp DA, Lee PC, Wang DH, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg. 2001; 34(2): 291–299.
  45. Newman KM, Jean-Claude J, Li H, et al. Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm wall. J Vasc Surg. 1994; 20(5): 814–820.
  46. Fontaine V, Jacob MP, Houard X, et al. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol. 2002; 161(5): 1701–1710.
  47. Kontopodis N, Koncar I, Tzirakis K, et al. Intraluminal Thrombus Deposition Is Reduced in Ruptured Compared to Diameter-matched Intact Abdominal Aortic Aneurysms. Ann Vasc Surg. 2019; 55: 189–195.
  48. Siika A, Lindquist Liljeqvist M, Hultgren R, et al. Aortic Lumen Area Is Increased in Ruptured Abdominal Aortic Aneurysms and Correlates to Biomechanical Rupture Risk. J Endovasc Ther. 2018; 25(6): 750–756.
  49. Qiu Y, Wang Yi, Fan Y, et al. Role of intraluminal thrombus in abdominal aortic aneurysm ruptures: A hemodynamic point of view. Med Phys. 2019; 46(9): 4263–4275.
  50. Gasser TC. Biomechanical Rupture Risk Assessment: A Consistent and Objective Decision-Making Tool for Abdominal Aortic Aneurysm Patients. Aorta (Stamford). 2016; 4(2): 42–60.
  51. Leemans EL, Willems TP, Slump CH, et al. Additional value of biomechanical indices based on CTa for rupture risk assessment of abdominal aortic aneurysms. PLoS One. 2018; 13(8): e0202672.
  52. Jalalzadeh H, Leemans EL, Indrakusuma R, et al. Estimation of Abdominal Aortic Aneurysm Rupture Risk with Biomechanical Imaging Markers. J Vasc Interv Radiol. 2019; 30(7): 987–994.e4.
  53. Polzer S, Gasser TC, Vlachovský R, et al. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J Vasc Surg. 2020; 71(2): 617–626.e6.
  54. Maier A, Gee MW, Reeps C, et al. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng. 2010; 38(10): 3124–3134.
  55. Scotti CM, Jimenez J, Muluk SC, et al. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput Methods. Biomech Biomed Engin. 2008; 11(3): 301–322.