open access

Vol 29, No 4 (2022)
Original Article
Submitted: 2022-01-07
Accepted: 2022-05-04
Published online: 2022-05-24
Get Citation

Outcomes and predictive value of the 2MACE score in patients with atrial fibrillation treated with rivaroxaban in a prospective, multicenter observational study: The EMIR study

Marcelo Sanmartín Fernández1, Manuel Anguita Sánchez2, Fernando Arribas3, Gonzalo Barón-Esquivias4, Vivencio Barrios5, Juan Cosin-Sales6, María Asunción Esteve-Pastor7, Roman Freixa-Pamias8, Iñaki Lekuona9, Alejandro I. Pérez-Cabeza10, Isabel Ureña11, José Manuel Vázquez Rodríguez12, Carles Rafols Priu13, Francisco Marin14
DOI: 10.5603/CJ.a2022.0044
·
Pubmed: 35621092
·
Cardiol J 2022;29(4):601-609.
Affiliations
  1. Department of Cardiology, Hospital Universitario Ramon y Cajal, Madrid, Spain.
  2. Department of Cardiology, Hospital Reina Sofía Córdoba, IMIBIC, University of Cordoba, Córdoba, Spain.
  3. Department of Cardiology, Hospital Universitario 12 de Octubre; Department of Medicine, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12); CIBERCV, Madrid, Spain
  4. Department of Cardiology, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Sevilla, Spain. Unidad Cardiovascular, Instituto de Biotecnología de Sevilla. Centro de Investigación en Red Cardiovascular, Madrid, Spain
  5. Department of Cardiology, University Hospital Ramón y Cajal, Madrid. Alcalá University, Madrid, Spain
  6. Department of Cardiology, Hospital Arnau de Vilanova, Valencia, Spain
  7. Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, University of Murcia, CIBERCV, Murcia, Spain
  8. Department of Cardiology, Hospital Moisés Broggi, Barcelona, Spain.
  9. Hospital Galdakao-Usansolo, Bizkaia, Spain
  10. Department of Cardiology, Hospital Costa del Sol, Marbella, Spain
  11. Department of Cardiology, Hospital Universitario Morales Meseguer, Murcia, Spain
  12. Department of Cardiology, Complejo Hospitalario Universitario A Coruña. INIBIC. CIBERCV. A Coruña, Spain
  13. Department of Medical Affairs, Bayer Hispania, Barcelona, Spain
  14. Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, University of Murcia, CIBERCV, Murcia, Spain

open access

Vol 29, No 4 (2022)
Original articles — Clinical cardiology
Submitted: 2022-01-07
Accepted: 2022-05-04
Published online: 2022-05-24

Abstract

Background: The aim of the study was to evaluate the performance of the 2MACE in patients with atrial fibrillation (AF) treated with rivaroxaban and to improve the accuracy of 2MACE.

Methods: This was a post-authorization and observational study of AF adults treated with rivaroxaban for ≥ 6 months. The primary endpoint was any of the major adverse cardiac events (MACE), namely, cardiovascular death, non-fatal myocardial infarction, and myocardial revascularization. The area under the curve (AUC) was calculated to evaluate the performance of 2MACE, and a new score, 2MACER to predict MACE.

Results: A total of 1433 patients were included (74.2 ± 9.7 years, CHA2DS2-VASc 3.5 ± 1.5, 26.9% 2MACE ≥ 3). The annual event rates (follow-up 2.5 years) were 1.07% for MACE, 0.66% for thromboembolic events and 1.04% for major bleeding. Patients with 2MACE ≥ 3 (vs. < 3) had higher risk of stroke/systemic embolism/transient ischemic attack (odds ratio [OR] 5.270; 95% CI 2.216–12.532), major bleeding (OR 4.624; 95% CI 2.163–9.882), MACE (OR 3.202; 95% CI 1.548–6.626) and cardiovascular death (OR 3.395; 95% CI 1.396–8.259). 2MACE was recalculated giving 1 more point to patients with baseline a glomerular filtration rate < 50 mL/min/1.73 m2 (2MACER); 2MACER vs. 2MACE: IDI 0.1%, p = 0.126; NRI 23.9%, p = 0.125; AUC: 0.651 (95% CI 0.547–0.755) vs. 0.638 (95% CI 0.534–0.742), respectively; p = 0.361.

Conclusions: In clinical practice, AF patients anticoagulated with rivaroxaban exhibit a low risk of events. 2MACE score acts as a modest predictor of a higher risk of adverse outcomes in this population. 2MACER did not significantly increase the ability of 2MACE to predict MACE.

Abstract

Background: The aim of the study was to evaluate the performance of the 2MACE in patients with atrial fibrillation (AF) treated with rivaroxaban and to improve the accuracy of 2MACE.

Methods: This was a post-authorization and observational study of AF adults treated with rivaroxaban for ≥ 6 months. The primary endpoint was any of the major adverse cardiac events (MACE), namely, cardiovascular death, non-fatal myocardial infarction, and myocardial revascularization. The area under the curve (AUC) was calculated to evaluate the performance of 2MACE, and a new score, 2MACER to predict MACE.

Results: A total of 1433 patients were included (74.2 ± 9.7 years, CHA2DS2-VASc 3.5 ± 1.5, 26.9% 2MACE ≥ 3). The annual event rates (follow-up 2.5 years) were 1.07% for MACE, 0.66% for thromboembolic events and 1.04% for major bleeding. Patients with 2MACE ≥ 3 (vs. < 3) had higher risk of stroke/systemic embolism/transient ischemic attack (odds ratio [OR] 5.270; 95% CI 2.216–12.532), major bleeding (OR 4.624; 95% CI 2.163–9.882), MACE (OR 3.202; 95% CI 1.548–6.626) and cardiovascular death (OR 3.395; 95% CI 1.396–8.259). 2MACE was recalculated giving 1 more point to patients with baseline a glomerular filtration rate < 50 mL/min/1.73 m2 (2MACER); 2MACER vs. 2MACE: IDI 0.1%, p = 0.126; NRI 23.9%, p = 0.125; AUC: 0.651 (95% CI 0.547–0.755) vs. 0.638 (95% CI 0.534–0.742), respectively; p = 0.361.

Conclusions: In clinical practice, AF patients anticoagulated with rivaroxaban exhibit a low risk of events. 2MACE score acts as a modest predictor of a higher risk of adverse outcomes in this population. 2MACER did not significantly increase the ability of 2MACE to predict MACE.

Get Citation

Keywords

atrial fibrillation, bleeding, major adverse cardiac events (MACE), rivaroxaban, stroke

Supp./Additional Files (1)
Supplementary material
Download
242KB
About this article
Title

Outcomes and predictive value of the 2MACE score in patients with atrial fibrillation treated with rivaroxaban in a prospective, multicenter observational study: The EMIR study

Journal

Cardiology Journal

Issue

Vol 29, No 4 (2022)

Article type

Original Article

Pages

601-609

Published online

2022-05-24

Page views

2007

Article views/downloads

370

DOI

10.5603/CJ.a2022.0044

Pubmed

35621092

Bibliographic record

Cardiol J 2022;29(4):601-609.

Keywords

atrial fibrillation
bleeding
major adverse cardiac events (MACE)
rivaroxaban
stroke

Authors

Marcelo Sanmartín Fernández
Manuel Anguita Sánchez
Fernando Arribas
Gonzalo Barón-Esquivias
Vivencio Barrios
Juan Cosin-Sales
María Asunción Esteve-Pastor
Roman Freixa-Pamias
Iñaki Lekuona
Alejandro I. Pérez-Cabeza
Isabel Ureña
José Manuel Vázquez Rodríguez
Carles Rafols Priu
Francisco Marin

References (29)
  1. Miyasaka Y, Barnes ME, Bailey KR, et al. Mortality trends in patients diagnosed with first atrial fibrillation: a 21-year community-based study. J Am Coll Cardiol. 2007; 49(9): 986–992.
  2. Hindricks G, Potpara T, Dagres N, et al. ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021; 42(5): 373–498.
  3. Soliman EZ, Safford MM, Muntner P, et al. Atrial fibrillation and the risk of myocardial infarction. JAMA Intern Med. 2014; 174(1): 107–114.
  4. Soliman EZ, Lopez F, O'Neal WT, et al. Atrial Fibrillation and Risk of ST-Segment-Elevation Versus Non-ST-Segment-Elevation Myocardial Infarction: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2015; 131(21): 1843–1850.
  5. Pastori D, Farcomeni A, Poli D, et al. Cardiovascular risk stratification in patients with non-valvular atrial fibrillation: the 2MACE score. Intern Emerg Med. 2016; 11(2): 199–204.
  6. Pastori D, Pignatelli P, Saliola M, et al. Inadequate anticoagulation by vitamin K antagonists is associated with major adverse cardiovascular events in patients with atrial fibrillation. Int J Cardiol. 2015; 201: 513–516.
  7. Bassand JP, Apenteng PN, Atar D, et al. GARFIELD-AF: a worldwide prospective registry of patients with atrial fibrillation at risk of stroke. Future Cardiol. 2021; 17(1): 19–38.
  8. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014; 383(9921): 955–962.
  9. Camm AJ, Amarenco P, Haas S, et al. XANTUS: rationale and design of a noninterventional study of rivaroxaban for the prevention of stroke in patients with atrial fibrillation. Vasc Health Risk Manag. 2014; 10: 425–434.
  10. Hecker J, Marten S, Keller L, et al. Effectiveness and safety of rivaroxaban therapy in daily-care patients with atrial fibrillation. Results from the Dresden NOAC Registry. Thromb Haemost. 2016; 115(5): 939–949.
  11. Camm AJ, Amarenco P, Haas S, et al. XANTUS: a real-world, prospective, observational study of patients treated with rivaroxaban for stroke prevention in atrial fibrillation. Eur Heart J. 2016; 37(14): 1145–1153.
  12. Fernández M, Marín F, Rafols C, et al. Thromboembolic and bleeding events with rivaroxaban in clinical practice in Spain: impact of inappropriate doses (the EMIR study). J Comp Eff Res. 2021; 10(7): 583–593.
  13. Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005; 3(4): 692–694.
  14. Violi F, Soliman EZ, Pignatelli P, et al. Atrial fibrillation and myocardial infarction: a systematic review and appraisal of pathophysiologic mechanisms. J Am Heart Assoc. 2016; 5(5).
  15. Szymańska A, Płatek AE, Semczuk-Kaczmarek K, et al. Usefulness of the 2MACE score as a predictor of long-term all-cause mortality in patients with atrial fibrillation. Pol Arch Intern Med. 2020; 130(7-8): 635–639.
  16. Rivera-Caravaca JM, Marín F, Esteve-Pastor MA, et al. Usefulness of the 2MACE score to predicts adverse cardiovascular events in patients with atrial fibrillation. Am J Cardiol. 2017; 120(12): 2176–2181.
  17. Polovina M, Đikić D, Vlajković A, et al. Adverse cardiovascular outcomes in atrial fibrillation: Validation of the new 2MACE risk score. Int J Cardiol. 2017; 249: 191–197.
  18. Pastori D, Biccirè FG, Lip GY, et al. Relation of atrial fibrillation to angiographic characteristics and coronary artery disease severity in patients undergoing percutaneous coronary intervention. Am J Cardiol. 2021; 141: 1–6.
  19. Ding WY, Lip GYH, Pastori D, et al. Effects of atrial fibrillation and chronic kidney disease on major adverse cardiovascular events. Am J Cardiol. 2020; 132: 72–78.
  20. Pastori D, Rivera-Caravaca JM, Esteve-Pastor MA, et al. Comparison of the 2MACE and TIMI-AF scores for composite clinical outcomes in anticoagulated atrial fibrillation patients. Circ J. 2018; 82(5): 1286–1292.
  21. Eikelboom J, Connolly S, Bosch J, et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N Engl J Med. 2017; 377(14): 1319–1330.
  22. So CH, Eckman MH. Combined aspirin and anticoagulant therapy in patients with atrial fibrillation. J Thromb Thrombolysis. 2017; 43(1): 7–17.
  23. Martí E, Segado A, Pastor-Galán I, et al. Use of rivaroxaban for the prevention of stroke in patients with nonvalvular atrial fibrillation in Spain. Future Cardiol. 2018; 14(3s): 3–8.
  24. Pérez Cabeza AI, González Correa JA, Chinchurreta Capote PA, et al. Drug persistence and outcomes in a cohort of patients with nonvalvular atrial fibrillation treated with rivaroxaban after 2 years of follow-up in clinical practice. Future Cardiol. 2018; 14(3s): 9–16.
  25. Muñiz Lobato S, Tarrazo Tarrazo C, González Fernández E, et al. Clinical profile, adequacy of dosage and thromboembolic and bleeding outcomes in patients with nonvalvular atrial fibrillation treated with rivaroxaban in a regional hospital of Asturias, Spain. Future Cardiol. 2018; 14(3s): 17–24.
  26. Gavín Sebastián O, Izuzquiza Fernández M, Martínez Fernández R, et al. Anticoagulation with rivaroxaban in a hematology unit: clinical profile, events and discontinuation rates in real-life patients with nonvalvular atrial fibrillation. Future Cardiol. 2018; 14(3s): 25–30.
  27. Cerezo-Manchado JJ, Navarro-Almenzar B, Elvira-Ruiz G, et al. Effectiveness and safety of rivaroxaban in a cohort of 142 patients with nonvalvular atrial fibrillation treated with rivaroxaban for the prevention of stroke. Future Cardiol. 2018; 14(3s): 31–37.
  28. Brun Guinda D, Callen García Ó, Ondiviela Pérez J, et al. Clinical profile, management and outcomes in a cohort of elderly and highly comorbid patients with nonvalvular atrial fibrillation treated with rivaroxaban in routine practice. Future Cardiol. 2018; 14(3s): 39–45.
  29. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011; 365(10): 883–891.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl