open access

Vol 26, No 2 (2022)
Review paper
Published online: 2022-05-06
Get Citation

Cognitive dysfunctions in patients with hypertension — pathogenesis and treatment

Anna Wolska-Bułach1, Malgorzata Wierzowiecka1, Karolina Niklas2, Andrzej Tykarski1, Arkadiusz Niklas1
·
Arterial Hypertension 2022;26(2):45-59.
Affiliations
  1. Department of Hypertension, Angiology and Internal Medicine Poznan University of Medical Sciences, Poznan, Poland, Poland
  2. Department of Rheumatology, Rehabilitation, and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

open access

Vol 26, No 2 (2022)
REVIEW
Published online: 2022-05-06

Abstract

Memory disorders are one of the most frequent abnormalities found in the elderly. The dominant cause of the disorder is dementia of Alzheimer’s type (about 60%), vascular dementia is responsible for 15–20% of cases, and the rest are mixed forms. One of the basic symptoms is a weakening of the ability to remember. With time, dementia becomes more severe and the cognitive and mental disorders are accompanied by progressive somatic infirmity, leading in the final stage to bed immobilization and total dependence on the care of other people. Treatment of vascular dementia comes down to counteracting stroke risk factors and treating hypertension, as well as diabetes and other cardiovascular diseases. It has been clearly demonstrated that hypotensive drugs can reduce the risk of dementia.

When choosing therapy for elderly patients, we should also bear in mind the effects on blood pressure and blood pressure variability, as these have been shown to be associated with a higher risk of dementia. The guidelines indicate the benefit of using a combination of a thiazide-like diuretic (indapamide) and a calcium antagonist (amlodipine) in elderly. Combination treatment with a converting enzyme inhibitor (perindopril) and a thiazide-like diuretic (indapamide) is also particularly beneficial in this age group.

Abstract

Memory disorders are one of the most frequent abnormalities found in the elderly. The dominant cause of the disorder is dementia of Alzheimer’s type (about 60%), vascular dementia is responsible for 15–20% of cases, and the rest are mixed forms. One of the basic symptoms is a weakening of the ability to remember. With time, dementia becomes more severe and the cognitive and mental disorders are accompanied by progressive somatic infirmity, leading in the final stage to bed immobilization and total dependence on the care of other people. Treatment of vascular dementia comes down to counteracting stroke risk factors and treating hypertension, as well as diabetes and other cardiovascular diseases. It has been clearly demonstrated that hypotensive drugs can reduce the risk of dementia.

When choosing therapy for elderly patients, we should also bear in mind the effects on blood pressure and blood pressure variability, as these have been shown to be associated with a higher risk of dementia. The guidelines indicate the benefit of using a combination of a thiazide-like diuretic (indapamide) and a calcium antagonist (amlodipine) in elderly. Combination treatment with a converting enzyme inhibitor (perindopril) and a thiazide-like diuretic (indapamide) is also particularly beneficial in this age group.

Get Citation

Keywords

hypertension; dementia; treatment

About this article
Title

Cognitive dysfunctions in patients with hypertension — pathogenesis and treatment

Journal

Arterial Hypertension

Issue

Vol 26, No 2 (2022)

Article type

Review paper

Pages

45-59

Published online

2022-05-06

Page views

4298

Article views/downloads

614

DOI

10.5603/AH.a2022.0007

Bibliographic record

Arterial Hypertension 2022;26(2):45-59.

Keywords

hypertension
dementia
treatment

Authors

Anna Wolska-Bułach
Malgorzata Wierzowiecka
Karolina Niklas
Andrzej Tykarski
Arkadiusz Niklas

References (96)
  1. Ngo J, Holroyd-Leduc JM. Systematic review of recent dementia practice guidelines. Age Ageing. 2014; 44(1): 25–33.
  2. Jóźwiak A. Otępienie u osób w wieku starszym. Geriatria. 2008; 2: 237–46.
  3. Główny Urząd Statystyczny. Ludnośćw wieku 60 lat i więcej. http://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5468/24/1/1/ludnosc_w_wieku_60._struktura_demograficzna_i_zdrowie.pdf.
  4. Główny Urząd Statystyczny. Sytuacja demograficzna osób starszych i konsekwencje starzenia się ludności Polski w świetle prognozy na lata 2014–2050. stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5468/18/1/1/ludnosc_w_starszym_wieku.pdf.
  5. Lewington S, Clarke R, Qizilbash N, et al. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002; 360(9349): 1903–1913.
  6. Staessen J, Gasowski J, Wang J, et al. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet. 2000; 355(9207): 865–872.
  7. Xu Y, Bouliotis G, Beckett NS, et al. HYVET Study Group, Hypertension in the Very Elderly Trial Working Group. Results of the pilot study for the Hypertension in the Very Elderly Trial. J Hypertens. 2003; 21(12): 2409–2417.
  8. Bejan-Angoulvant T, Saadatian-Elahi M, Wright JM, et al. Treatment of hypertension in patients 80 years and older: the lower the better? A meta-analysis of randomized controlled trials. J Hypertens. 2010; 28(7): 1366–1372.
  9. Niklas A, Flotyńska A, Puch-Walczak A, et al. WOBASZ II investigators. Prevalence, awareness, treatment and control of hypertension in the adult Polish population - Multi-center National Population Health Examination Surveys - WOBASZ studies. Arch Med Sci. 2018; 14(5): 951–961.
  10. Niklas AA, Flotyńska A, Zdrojewski T, et al. Trends in hypertension prevalence, awareness, treatment, and control among Polish adults 75 years and older during 2007-2014. Cardiol J. 2018; 25(3): 333–344.
  11. Grabiec U, Skalska A. Zespoły psycho-geriatryczne. In: Kocemba J, Grodzicki T. ed. Zarys gerontologii klinicznej. MCKPUJ , Kraków 2000: 84–101.
  12. Klich-Rączka A, Piotrowicz K, Skalska A et al. Zaburzenia funkcji poznawczych u osób star-szych w Polsce. W: Materiały z Konferencji podsumowującej projekt PolSenior. https://gerontologia.org.pl/konferencje-szkolenia/konferencja-podsumowujaca-projekt-polsenior.
  13. Roberts R, Knopman DS. Classification and epidemiology of MCI. Clin Geriatr Med. 2013; 29(4): 753–772.
  14. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020; 396(10248): 413–446.
  15. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999; 56(3): 303–308.
  16. Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001; 58(3): 397–405.
  17. Gabryelewicz T. Łagodne zaburzenia poznawcze — postępowanie terapeutyczne. Aktualności Neurologiczne. 2004; 4: 167–170.
  18. Knopman DS, Boeve BF, Petersen RC. Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin Proc. 2003; 78(10): 1290–1308.
  19. Ritchie K, Touchon J. Mild cognitive impairment: conceptual basis and current nosological status. Lancet. 2000; 355(9199): 225–228.
  20. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004; 256(3): 183–194.
  21. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999; 56(3): 303–308.
  22. Bozoki A, Giordani B, Heidebrink J, et al. Mild Cognitive Impairments Predict Dementia in Nondemented Elderly Patients With Memory Loss. Arch Neurol. 2001; 58(3).
  23. Grober E, Qi Qi, Kuo L, et al. Memory impairment on free and cued selective reminding predicts dementia. Neurology. 2000; 54(4): 827–832.
  24. DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol. 2003; 2(1): 15–21.
  25. Farias ST, Mungas D, Reed BR, et al. Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch Neurol. 2009; 66(9): 1151–1157.
  26. Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elederly persons with congnitiveimpairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004; 85(10): 1694–1704.
  27. Ganguli M, Fu Bo, Snitz BE, et al. Mild cognitive impairment: incidence and vascular risk factors in a population-based cohort. Neurology. 2013; 80(23): 2112–2120.
  28. Jankowska K, Głuszek J. Zmiany otępienne wywołane nadciśnieniem tętniczym. Choroby Serca i Naczyń. 2005; 2(3): 125–130.
  29. Niklas A, Marcinkowska J, Kozela M, et al. Blood pressure and cholesterol control in patients with hypertension and hypercholesterolemia: the results from the Polish multicenter national health survey WOBASZ II. Pol Arch Intern Med. 2019; 129(12): 864–873.
  30. Burke GL, Hughes TM. Arterial Changes Connecting Hypertension to Alzheimer's Disease and Related Dementias. JACC Cardiovasc Imaging. 2021; 14(1): 186–188.
  31. Amier RP, Marcks N, Hooghiemstra AM, et al. Heart-Brain Connection Consortium. Hypertensive Exposure Markers by MRI in Relation to Cerebral Small Vessel Disease and Cognitive Impairment. JACC Cardiovasc Imaging. 2021; 14(1): 176–185.
  32. de Leeuw FE, de Groot JC, Oudkerk M, et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002; 125(Pt 4): 765–772.
  33. Longstreth WT, Manolio TA, Arnold A, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke. 1996; 27(8): 1274–1282.
  34. Vermeer S, Longstreth W, Koudstaal P. Silent brain infarcts: a systematic review. Lancet Neurol. 2007; 6(7): 611–619.
  35. Wong TY, Klein R, Sharrett AR, et al. ARIC Investigators. Atheroslerosis Risk in Communities Study. Cerebral white matter lesions, retinopathy, and incident clinical stroke. JAMA. 2002; 288(1): 67–74.
  36. Buyck JF, Dufouil C, Mazoyer B, et al. Cerebral white matter lesions are associated with the risk of stroke but not with other vascular events: the 3-City Dijon Study. Stroke. 2009; 40(7): 2327–2331.
  37. Mulvany MJ. Small aorty remodeling and significance in the development of hypertension. New Physiol Sci. 2002; 17: 105–109.
  38. Peters R, Beckett N, Fagard R, et al. Increased pulse pressure linked to dementia: further results from the Hypertension in the Very Elderly Trial - HYVET. J Hypertens. 2013; 31(9): 1868–1875.
  39. Whitmer RA, Sidney S, Selby J, et al. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology. 2005; 64(2): 277–281.
  40. Norton S, Matthews FE, Barnes DE, et al. Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. Lancet Neurol. 2014; 13(8): 788–794.
  41. Skoog I, Lernfelt B, Landahl S, et al. 15-year longitudinal study of blood pressure and dementia. Lancet. 1996; 347(9009): 1141–1145.
  42. Skoog I, Gustafson D. Update on hypertension and Alzheimer's disease. Neurol Res. 2006; 28(6): 605–611.
  43. Petrovitch H, White LR, Izmirilian G, et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study. Neurobiol Aging. 2000; 21(1): 57–62.
  44. Khachaturian AS, Zandi PP, Lyketsos CG, et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol. 2006; 63(5): 686–692.
  45. Guo Z, Fratiglioni L, Zhu L, et al. Occurrence and progression of dementia in a community population aged 75 years and older: relationship of antihypertensive medication use. Arch Neurol. 1999; 56(8): 991–996.
  46. Rozzini L, Vicini Chilovi B, Bellelli G, et al. Effects of cholinesterase inhibitors appear greater in patients on established antihypertensive therapy. Int J Geriatr Psychiatry. 2005; 20(6): 547–551.
  47. Hanon O, Pequignot R, Seux ML, et al. Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J Hypertens. 2006; 24(10): 2101–2107.
  48. Gelber RP, Ross GW, Petrovitch H, et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging. 2000; 21(1): 49–55.
  49. Mahinrad S, Kurian S, Garner CR, et al. Cumulative Blood Pressure Exposure During Young Adulthood and Mobility and Cognitive Function in Midlife. Circulation. 2020; 141(9): 712–724.
  50. Ninomiya T, Ohara T, Hirakawa Y, et al. Midlife and late-life blood pressure and dementia in Japanese elderly: the Hisayama study. Hypertension. 2011; 58(1): 22–28.
  51. Piotrowicz K, Prejbisz A, Klocek M, et al. Subclinical Mood and Cognition Impairments and Blood Pressure Control in a Large Cohort of Elderly Hypertensives. J Am Med Dir Assoc. 2016; 17(9): 864.e17–864.e22.
  52. Abell JG, Kivimäki M, Dugravot A, et al. Association between systolic blood pressure and dementia in the Whitehall II cohort study: role of age, duration, and threshold used to define hypertension. Eur Heart J. 2018; 39(33): 3119–3125.
  53. Maillard P, Seshadri S, Beiser A, et al. Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study. Lancet Neurol. 2012; 11(12): 1039–1047.
  54. Zonneveld TP, Richard E, Vergouwen MDI, et al. Blood pressure-lowering treatment for preventing recurrent stroke, major vascular events, and dementia in patients with a history of stroke or transient ischaemic attack. Cochrane Database Syst Rev. 2018; 7: CD007858.
  55. Levi Marpillat N, Macquin-Mavier I, Tropeano AI, et al. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens. 2013; 31(6): 1073–1082.
  56. Williamson J, Pajewski N, Auchus A, et al. SPRINT MIND Investigators for the SPRINT Research Group. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia. JAMA. 2019; 321(6): 553.
  57. Bosch J, O'Donnell M, Swaminathan B, et al. HOPE-3 Investigators. Effects of blood pressure and lipid lowering on cognition: Results from the HOPE-3 study. Neurology. 2019; 92(13): e1435–e1446.
  58. Hughes D, Judge C, Murphy R, et al. Association of Blood Pressure Lowering With Incident Dementia or Cognitive Impairment: A Systematic Review and Meta-analysis. JAMA. 2020; 323(19): 1934–1944.
  59. Corrada MM, Hayden KM, Paganini-Hill A, et al. Age of onset of hypertension and risk of dementia in the oldest-old: The 90+ Study. Alzheimers Dement. 2017; 13(2): 103–110.
  60. Szewieczek J, Dulawa J, Gminski J, et al. Better cognitive and physical performance is associated with higher blood pressure in centenarians. J Nutr Health Aging. 2011; 15(8): 618–622.
  61. Streit S, Poortvliet RKE, Gussekloo J. Lower blood pressure during antihypertensive treatment is associated with higher all-cause mortality and accelerated cognitive decline in the oldest-old. Data from the Leiden 85-plus Study. Age Ageing. 2018; 47(4): 545–550.
  62. Messerli FH, Streit S, Grodzicki T. The oldest old: does hypertension become essential again? Eur Heart J. 2018; 39(33): 3144–3146.
  63. Peters R, Anstey KJ, Booth A, et al. Orthostatic hypotension and symptomatic subclinical orthostatic hypotension increase risk of cognitive impairment: an integrated evidence review and analysis of a large older adult hypertensive cohort. Eur Heart J. 2018; 39(33): 3135–3143.
  64. Maule S, Papotti G, Naso D, et al. Orthostatic hypotension: evaluation and treatment. Cardiovasc Hematol Disord Drug Targets. 2007; 7(1): 63–70.
  65. Rutan GH, Hermanson B, Bild DE, et al. Orthostatic hypotension in older adults. The Cardiovascular Health Study. CHS Collaborative Research Group. Hypertension. 1992; 19(6 Pt 1): 508–519.
  66. Ooi WL. Patterns of orthostatic blood pressure change and their clinical correlates in a frail, elderly population. JAMA. 1997; 277(16): 1299–1304.
  67. Masaki KH, Schatz IJ, Burchfiel CM, et al. Orthostatic hypotension predicts mortality in elderly men: the Honolulu Heart Program. Circulation. 1998; 98(21): 2290–2295.
  68. Wolters FJ, Zonneveld HI, Hofman A, et al. Heart-Brain Connection Collaborative Research Group. Cerebral Perfusion and the Risk of Dementia: A Population-Based Study. Circulation. 2017; 136(8): 719–728.
  69. Hofman A, Ott A, Breteler MM, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet. 1997; 349(9046): 151–154.
  70. Oishi E, Ohara T, Sakata S, et al. Day-to-Day Blood Pressure Variability and Risk of Dementia in a General Japanese Elderly Population: The Hisayama Study. Circulation. 2017; 136(6): 516–525.
  71. Zhou TL, Kroon AA, van Sloten TT, et al. Greater Blood Pressure Variability Is Associated With Lower Cognitive Performance. Hypertension. 2019; 73(4): 803–811.
  72. Fujiwara T, Hoshide S, Kanegae H, et al. Exaggerated blood pressure variability is associated with memory impairment in very elderly patients. J Clin Hypertens (Greenwich). 2018; 20(4): 637–644.
  73. Briggs R, Carey D, Kennelly SP, et al. Longitudinal Association Between Orthostatic Hypotension at 30 Seconds Post-Standing and Late-Life Depression. Hypertension. 2018; 71(5): 946–954.
  74. Hirsch J, DePalma G, Tsai TT, et al. Impact of intraoperative hypotension and blood pressure fluctuations on early postoperative delirium after non-cardiac surgery. Br J Anaesth. 2015; 115(3): 418–426.
  75. Butt DA, Mamdani M, Austin PC. The risk of hip fracture after initiating antihypertensive drugs in the elderly. Arch Intern Med. 2012; 172(22): 1739–1744.
  76. Roush GC, Zubair A, Singh K, et al. Does the benefit from treating to lower blood pressure targets vary with age? A systematic review and meta-analysis. J Hypertens. 2019; 37(8): 1558–1566.
  77. Juraschek SP, Hu JR, Cluett JL, et al. Effects of Intensive Blood Pressure Treatment on Orthostatic Hypotension : A Systematic Review and Individual Participant-based Meta-analysis. Ann Intern Med. 2021; 174(1): 58–68.
  78. Williamson J, Pajewski N, Auchus A, et al. SPRINT MIND Investigators for the SPRINT Research Group. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia. JAMA. 2019; 321(6): 553–561.
  79. Vaduganathan M, Claggett BL, Juraschek SP, et al. Assessment of Long-term Benefit of Intensive Blood Pressure Control on Residual Life Span: Secondary Analysis of the Systolic Blood Pressure Intervention Trial (SPRINT). JAMA Cardiol. 2020; 5(5): 576–581.
  80. Tykarski A, Filipiak KJ, Januszewicz A, et al. Zasady postępowania w nadciśnieniu tętniczym — 2019 rok. Wytyczne Polskiego Towarzystwa Nadciśnienia Tętniczego. Nadciśnienie Tętnicze w Praktyce. 2019; 5(1): 1–86.
  81. Gueyffier F, Bulpitt C, Boissel JP, et al. Antihypertensive drugs in very old people: a subgroup meta-analysis of randomised controlled trials. INDANA Group. Lancet. 1999; 353(9155): 793–796.
  82. Beckett N, Peters R, Leonetti G, et al. HYVET Study Group. Subgroup and per-protocol analyses from the Hypertension in the Very Elderly Trial. J Hypertens. 2014; 32(7): 1478–87; discussion 1487.
  83. Peters R, Beckett N, Forette F, et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 2008; 7(8): 683–689.
  84. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991; 265(24): 3255–3264.
  85. Chen P, Chaugai S, Zhao F, et al. Cardioprotective Effect of Thiazide-Like Diuretics: A Meta-Analysis. Am J Hypertens. 2015; 28(12): 1453–1463.
  86. Chalmers J, Mourad JJ, Champvallins MDe, et al. Benefit of Indapamid-based treatment on mortality a systematic review and meta-analysis . J Hypertens. 2019; 37: e57.
  87. Chalmers J, Castaigne A, Morgan T, et al. Long-term efficacy of a new, fixed, very-low-dose angiotensin-converting enzyme-inhibitor/diuretic combination as first-line therapy in elderly hypertensive patients. J Hypertens. 2000; 18(3): 327–337.
  88. Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003; 60(8): 1119–1122.
  89. Knopman DS, DeKosky ST, Cummings JL, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001; 56(9): 1143–1153.
  90. Staessen JA, Fagard R, Thijs L, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet. 1997; 350(9080): 757–764.
  91. Wang JG, Li Y, Franklin SS, et al. Prevention of stroke and myocardial infarction by amlodipine and Angiotensin receptor blockers: a quantitative overview. Hypertension. 2007; 50(1): 181–188.
  92. Kollias A, Stergiou GS, Kyriakoulis KG, et al. Treating Visit-to-Visit Blood Pressure Variability to Improve Prognosis: Is Amlodipine the Drug of Choice? Hypertension. 2017; 70(5): 862–866.
  93. Howard JP, Patel H, Shun-Shin MJ, et al. Impact of number of prescribed medications on visit-to-visit variability of blood pressure: implications for design of future trials of renal denervation. J Hypertens. 2015; 33(11): 2359–2367.
  94. Williams B, Mancia G, Spiering W, et al. Authors/Task Force Members:, ESC Scientific Document Group . 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018; 39(33): 3021–3104.
  95. Jadhav U, Hiremath J, Namjoshi DJ, et al. Blood pressure control with a single-pill combination of indapamide sustained-release and amlodipine in patients with hypertension: the EFFICIENT study. PLoS One. 2014; 8(9): e92955.
  96. Hanon O, Caillard L, Chaussade E, et al. Blood pressure-lowering efficacy of indapamide SR/amlodipine combination in older patients with hypertension: A post hoc analysis of the NESTOR trial (Natrilix SR vs Enalapril in Hypertensive Type 2 Diabetics With Microalbuminuria). J Clin Hypertens (Greenwich). 2017; 19(10): 965–972.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl