open access

Ahead of print
REVIEW
Published online: 2021-07-01
Get Citation

Why not change the therapy of hypertension in patients with COVID-19. Dual role of angiotensin-converting enzyme 2

Teresa Maria Kosicka, Jerzy Głuszek
DOI: 10.5603/AH.a2021.0014

open access

Ahead of print
REVIEW
Published online: 2021-07-01

Abstract

Despite many organizational and medical efforts, the COVID-19 epidemic continues and is taking a lethal toll. Preliminary reports have already reported that the mortality associated with this disease is much higher in people with comorbidities, including hypertension. SARS-CoV-2 virus enters the body through the receptor which is the angiotensin converting enzyme 2. The administration of angiotensin converting enzyme inhibitors or sartans increases the activity of this enzyme. Therefore, there was a suspicion that patients treated with these preparations become more easily infected, and the infection itself is more severe and is associated with greater mortality. On the other hand, the ACE2 enzyme is known to reduce the risk of lung damage. The paper presents current reports describing the frequency of SARS-CoV-2 virus infection in patients with hypertension, the course of infection and the effect of administration of ACE inhibitors and sartans on the mortality of these patients. The presented data indicate that the use of angiotensin converting enzyme inhibitors and sartans in patients with COVID-19 does not worsen the course of the disease, and according to some authors this treatment even reduces the mortality of this infection.

Abstract

Despite many organizational and medical efforts, the COVID-19 epidemic continues and is taking a lethal toll. Preliminary reports have already reported that the mortality associated with this disease is much higher in people with comorbidities, including hypertension. SARS-CoV-2 virus enters the body through the receptor which is the angiotensin converting enzyme 2. The administration of angiotensin converting enzyme inhibitors or sartans increases the activity of this enzyme. Therefore, there was a suspicion that patients treated with these preparations become more easily infected, and the infection itself is more severe and is associated with greater mortality. On the other hand, the ACE2 enzyme is known to reduce the risk of lung damage. The paper presents current reports describing the frequency of SARS-CoV-2 virus infection in patients with hypertension, the course of infection and the effect of administration of ACE inhibitors and sartans on the mortality of these patients. The presented data indicate that the use of angiotensin converting enzyme inhibitors and sartans in patients with COVID-19 does not worsen the course of the disease, and according to some authors this treatment even reduces the mortality of this infection.

Get Citation

Keywords

COVID-19, hypertension, angiotensin-converting inhibitors and sartans, angiotensin-converting enzyme 2

About this article
Title

Why not change the therapy of hypertension in patients with COVID-19. Dual role of angiotensin-converting enzyme 2

Journal

Arterial Hypertension

Issue

Ahead of print

Published online

2021-07-01

DOI

10.5603/AH.a2021.0014

Keywords

COVID-19
hypertension
angiotensin-converting inhibitors and sartans
angiotensin-converting enzyme 2

Authors

Teresa Maria Kosicka
Jerzy Głuszek

References (61)
  1. Yang J, Zheng Ya, Gou Xi, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020; 94: 91–95.
  2. Cure E, Cumhur Cure M. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be harmful in patients with diabetes during COVID-19 pandemic. Diabetes Metab Syndr. 2020; 14(4): 349–350.
  3. Ciulla MM. Switching to another antihypertensive effective drug when using ACEIs/ARBs to treat arterial hypertension during COVID-19. Eur Heart J. 2020; 41(19): 1856.
  4. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181(2): 271–280.e8.
  5. Walls AC, Park YJ, Tortorici MA, et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2): 281–292.e6.
  6. Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631–637.
  7. Dobbs LG. Pulmonary Surfactant. Ann Rev Med. 1989; 40(1): 431–446.
  8. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005; 11(8): 875–879.
  9. Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020; 24(1): 422.
  10. Baud D, Qi X, Nielsen-Saines K, et al. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020; 20(7): 773.
  11. Uhal BD, Li X, Piasecki CC, et al. Angiotensin signalling in pulmonary fibrosis. Int J Biochem Cell Biol. 2012; 44(3): 465–468.
  12. Zambelli V, Bellani G, Borsa R, et al. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med Exp. 2015; 3(1): 44.
  13. Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol. 2020; 113: 104350.
  14. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436(7047): 112–116.
  15. Zhang X, Li S, Niu S. ACE2 and COVID-19 and the resulting ARDS. Postgrad Med J. 2020; 96(1137): 403–407.
  16. Kleinsasser A, Pircher I, Treml B, et al. Recombinant angiotensin-converting enzyme 2 suppresses pulmonary vasoconstriction in acute hypoxia. Wilderness Environ Med. 2012; 23(1): 24–30.
  17. Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020; 92(7): 726–730.
  18. Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017; 21(1): 234.
  19. Wang K, Basu R, Poglitsch M, et al. Elevated Angiotensin 1-7/Angiotensin II Ratio Predicts Favorable Outcomes in Patients With Heart Failure. Circ Heart Fail. 2020; 13(7): e006939.
  20. Adams ML, Katz DL, Grandpre J. Population-Based Estimates of Chronic Conditions Affecting Risk for Complications from Coronavirus Disease, United States. Emerg Infect Dis. 2020; 26(8): 1831–1833.
  21. Yang J, Zheng Ya, Gou Xi, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020; 94: 91–95.
  22. Enami A, Javanmardi F, Pirbonyah N, et al. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch Acad Emerg Med. 2020; 8(1): e35.
  23. Wang Z, Chen Z, Zhang L, et al. China Hypertension Survey Investigators. Status of Hypertension in China: Results From the China Hypertension Survey, 2012-2015. Circulation. 2018; 137(22): 2344–2356.
  24. Mancia G, Rea F, Ludergnani M, et al. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. N Engl J Med. 2020; 382(25): 2431–2440.
  25. Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(15): 458–464.
  26. Liu W, Tao ZW, Wang L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020; 133(9): 1032–1038.
  27. Wang D, Hu Bo, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–1069.
  28. Chen C, Chen C, Yan JT, et al. [Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020; 48(7): 567–571.
  29. Xiang T, Liu J, Xu F, et al. Analysis of clinical characteristics of 49 patients with new type of coronavirus pneumonia in Jiangxi region. Chin J Resp Crit Care. 2020; 19: 154–160.
  30. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020; 75(7): 1730–1741.
  31. Yang J, Zheng Ya, Gou Xi, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020; 94: 91–95.
  32. Wang B, Li R, Lu Z, et al. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY). 2020; 12(7): 6049–6057.
  33. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020; 130(4): 304–309.
  34. Chen R, Liang W, Jiang M, et al. Medical Treatment Expert Group for COVID-19. Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China. Chest. 2020; 158(1): 97–105.
  35. Li G, Li H, Lu J. No adequate evidence indicating hypertension as an independent risk factor for COVID-19 severity. Clin Res Cardiol. 2021; 110(1): 146–147.
  36. Guan WJ, Liang WH, Zhao Yi, et al. China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020; 55(5).
  37. Xu K, Chen Y, Yuan J, et al. Factors Associated With Prolonged Viral RNA Shedding in Patients with Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2020; 71(15): 799–806.
  38. Ferrario CM, Jessup J, Gallagher PE, et al. Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int. 2005; 68(5): 2189–2196.
  39. Burchill LJ, Velkoska E, Dean RG, et al. Combination renin-angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: implications for future therapeutic directions. Clin Sci (Lond). 2012; 123(11): 649–658.
  40. Shen L, Mo H, Cai L, et al. Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappaB and mitogen-activated protein kinases. Shock. 2009; 31(5): 500–506.
  41. Lai CC, Wang YH, Wang CY, et al. Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on the risk of pneumonia and severe exacerbations in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2018; 13: 867–874.
  42. Spannella F, Giulietti F, Balietti P, et al. Renin-Angiotensin System Blockers and Statins Are Associated With Lower In-Hospital Mortality in Very Elderly Hypertensives. J Am Med Dir Assoc. 2018; 19(4): 342–347.
  43. Caldeira D, Alarcão J, Vaz-Carneiro A, et al. Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. BMJ. 2012; 345: e4260.
  44. Siedlinski M, Jozefczuk E, Xu X, et al. White Blood Cells and Blood Pressure: A Mendelian Randomization Study. Circulation. 2020; 141(16): 1307–1317.
  45. Youn JC, Yu HT, Lim BJ, et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013; 62(1): 126–133.
  46. Guzik TJ, Harrison DG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today. 2006; 11(11-12): 524–533.
  47. Henry C, Zaizafoun M, Stock E, et al. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proc (Bayl Univ Med Cent). 2018; 31(4): 419–423.
  48. Zhang P, Zhu L, Cai J, et al. Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ Res. 2020; 126(12): 1671–1681.
  49. Li J, Wang X, Chen J, et al. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol. 2020; 5(7): 825–830.
  50. Mancia G, Rea F, Ludergnani M, et al. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. N Engl J Med. 2020; 382(25): 2431–2440.
  51. Zhang X, Yu J, Pan LY, et al. ACEI/ARB use and risk of infection or severity or mortality of COVID-19: A systematic review and meta-analysis. Pharmacol Res. 2020; 158: 104927.
  52. Guo X, Zhu Y, Hong Y. Decreased Mortality of COVID-19 With Renin-Angiotensin-Aldosterone System Inhibitors Therapy in Patients With Hypertension: A Meta-Analysis. Hypertension. 2020; 76(2): e13–e14.
  53. Flacco ME, Acuti Martellucci C, Bravi F, et al. Treatment with ACE inhibitors or ARBs and risk of severe/lethal COVID-19: a meta-analysis. Heart. 2020; 106(19): 1519–1524.
  54. Greco A, Buccheri S, D'Arrigo P, et al. Outcomes of renin-angiotensin-aldosterone system blockers in patients with COVID-19: a systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother. 2020; 6(5): 335–337.
  55. Pranata R, Permana H, Huang I, et al. The use of renin angiotensin system inhibitor on mortality in patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Diabetes Metab Syndr. 2020; 14(5): 983–990.
  56. Pirola CJ, Sookoian S. Estimation of Renin-Angiotensin-Aldosterone-System (RAAS)-Inhibitor effect on COVID-19 outcome: A Meta-analysis. J Infect. 2020; 81(2): 276–281.
  57. Baral R, White M, Vassiliou VS. Effect of Renin-Angiotensin-Aldosterone System Inhibitors in Patients with COVID-19: a Systematic Review and Meta-analysis of 28,872 Patients. Curr Atheroscler Rep. 2020; 22(10): 61.
  58. Patoulias D, Katsimardou A, Stavropoulos K, et al. Renin-Angiotensin System Inhibitors and COVID-19: a Systematic Review and Meta-Analysis. Evidence for Significant Geographical Disparities. Curr Hypertens Rep. 2020; 22(11): 90.
  59. Atalay C, Dogan N, Aykan S, et al. The efficacy of spironolactone in the treatment of acute respiratory distress syndrome-induced rats. Singapore Med J. 2010; 51(6): 501–505.
  60. Guan WJ, Ni ZY, Hu Yu, et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382(18): 1708–1720.
  61. Zhang XJ, Qin JJ, Cheng Xu, et al. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metab. 2020; 32(2): 176–187.e4.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl