Vol 25, No 2 (2021)
REVIEW
Published online: 2020-09-16

open access

Page views 858
Article views/downloads 516
Get Citation

Connect on Social Media

Connect on Social Media

Cardiovascular diseases in youth patients with glucose metabolism impairment

Aleksandra Pilśniak1, Artur Chwalba2, Ewa Otto-Buczkowska3
Arterial Hypertension 2021;25(2):63-68.

Abstract

Glucose metabolism disorders in adolescent patients have a diverse background. The most common cause is type 1 diabetes. Persistently elevated blood glucose initiates many processes that lead to blood vessel and nerve damage.

Early detection and treatment of these abnormalities can help prevent the development of many complications.

Article available in PDF format

View PDF Download PDF file

References

  1. Sun D, Li X, Heianza Y, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003; 290(17): 2271–2276.
  2. Raitakari OT, Juonala M, Kähönen M, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003; 290(17): 2277–2283.
  3. Babar GS, Zidan H, Widlansky ME, et al. Impaired endothelial function in preadolescent children with type 1 diabetes. Diabetes Care. 2011; 34(3): 681–685.
  4. Rodriguez BL, Fujimoto WY, Mayer-Davis EJ, et al. Prevalence of cardiovascular disease risk factors in U.S. children and adolescents with diabetes: the SEARCH for diabetes in youth study. Diabetes Care. 2006; 29(8): 1891–1896.
  5. Graves LE, Donaghue KC. Management of diabetes complications in youth. Ther Adv Endocrinol Metab. 2019; 10: 2042018819863226.
  6. Stankute I, Dobrovolskiene R, Danyte E, et al. Factors Affecting Cardiovascular Risk in Children, Adolescents, and Young Adults with Type 1 Diabetes. J Diabetes Res. 2019; 2019: 1–10.
  7. Donaghue KC, Wadwa RP, Dimeglio LA, et al. International Society for Pediatric and Adolescent Diabetes. ISPAD Clinical Practice Consensus Guidelines 2014. Microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes. 2014; 15 Suppl 20: 257–269.
  8. Wadwa RP. Cardiovascular disease risk in youth with diabetes mellitus. Rev Endocr Metab Disord. 2006; 7(3): 197–204.
  9. Glowinska B, Urban M, Koput A. Cardiovascular risk factors in children with obesity, hypertension and diabetes: lipoprotein(a) levels and body mass index correlate with family history of cardiovascular disease. Eur J Pediatr. 2002; 161(10): 511–518.
  10. Stettler C, Allemann S, Jüni P, et al. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: Meta-analysis of randomized trials. Am Heart J. 2006; 152(1): 27–38.
  11. Głowińska-Olszewska B, Luczyński W, Bossowski A. [Endothelial progenitor cells as a new marker of endothelial function with respect to risk of cardiovascular disorders]. Postepy Hig Med Dosw (Online). 2011; 65: 8–15.
  12. Longo M, Scappaticcio L, Bellastella G, et al. METRO Study Group. Alterations in the Levels of Circulating and Endothelial Progenitor Cells Levels in Young Adults with Type 1 Diabetes: A 2-Year Follow-Up from the Observational METRO Study. Diabetes Metab Syndr Obes. 2020; 13: 777–784.
  13. Babar G, Clements M, Dai H, et al. Assessment of biomarkers of inflammation and premature atherosclerosis in adolescents with type-1 diabetes mellitus. J Pediatr Endocrinol Metab. 2019; 32(2): 109–113.
  14. Gorst C, Kwok CS, Aslam S, et al. Long-term Glycemic Variability and Risk of Adverse Outcomes: A Systematic Review and Meta-analysis. Diabetes Care. 2015; 38(12): 2354–2369.
  15. Nusca A, Tuccinardi D, Albano M, et al. Glycemic variability in the development of cardiovascular complications in diabetes. Diabetes Metab Res Rev. 2018; 34(8): e3047.
  16. Xia J, Yin C. Glucose Variability and Coronary Artery Disease. Heart Lung Circ. 2019; 28(4): 553–559.
  17. Costantino S, Ambrosini S, Paneni F. The epigenetic landscape in the cardiovascular complications of diabetes. J Endocrinol Invest. 2019; 42(5): 505–511.
  18. Llauradó G, Gutiérrez C, Giménez-Palop O, et al. Haptoglobin genotype is associated with increased endothelial dysfunction serum markers in type 1 diabetes. Eur J Clin Invest. 2015; 45(9): 932–939.
  19. Koschinsky ML, Marcovina SM. The relationship between lipoprotein(a) and the complications of diabetes mellitus. Acta Diabetol. 2003; 40(2): 65–76.
  20. Siminerio LM, Albanese-O'Neill A, Chiang JL, et al. American Diabetes Association. Care of young children with diabetes in the child care setting: a position statement of the American Diabetes Association. Diabetes Care. 2014; 37(10): 2834–2842.
  21. Hsueh WA, Lyon CJ, Quiñones MJ. Insulin resistance and the endothelium. Am J Med. 2004; 117(2): 109–117.
  22. Lee Y, Chakraborty S, Meininger CJ, et al. Insulin resistance disrupts cell integrity, mitochondrial function, and inflammatory signaling in lymphatic endothelium. Microcirculation. 2018; 25(7): e12492.
  23. Czupryniak L, Saryusz-Wolska M, Pawlowski M, et al. Elevated systolic blood pressure is present in almost all individuals with newly diagnosed diabetes. J Hum Hypertens. 2006; 20(3): 231–233.
  24. Krishnan S, Short KR. Prevalence and significance of cardiometabolic risk factors in children with type 1 diabetes. J Cardiometab Syndr. 2009; 4(1): 50–56.
  25. Mateo-Gavira I, Vílchez-López FJ, García-Palacios MV, et al. Early blood pressure alterations are associated with pro-inflammatory markers in type 1 diabetes mellitus. J Hum Hypertens. 2017; 31(2): 151–156.
  26. Chessa M, Butera G, Lanza GA, et al. Role of heart rate variability in the early diagnosis of diabetic autonomic neuropathy in children. Herz. 2002; 27(8): 785–790.
  27. Kowalewski MA, Urban M. Short- and long-term reproducibility of autonomic measures in supine and standing positions. Clin Sci (Lond). 2004; 106(1): 61–66.
  28. Pop-Busui R. Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care. 2010; 33(2): 434–441.
  29. Ayad F, Belhadj M, Pariés J, et al. Association between cardiac autonomic neuropathy and hypertension and its potential influence on diabetic complications. Diabet Med. 2010; 27(7): 804–811.
  30. Karavanaki K, Baum JD. Coexistence of impaired indices of autonomic neuropathy and diabetic nephropathy in a cohort of children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2003; 16(1): 79–90.
  31. Pietrzak I, Szadkowska A, Czerniawska E, et al. [Prehypertension risk factors in children and adolescents with type 1 diabetes]. Przegl Lek. 2006; 63 Suppl 3: 111–114.
  32. Pietrzak I, Mianowska B, Gadzicka A, et al. Blood pressure in children and adolescents with type 1 diabetes mellitus--the influence of body mass index and fat mass. Pediatr Endocrinol Diabetes Metab. 2009; 15(4): 240–245.
  33. Specht BJ, Wadwa RP, Snell-Bergeon JK, et al. Estimated insulin sensitivity and cardiovascular disease risk factors in adolescents with and without type 1 diabetes. J Pediatr. 2013; 162(2): 297–301.
  34. Jenkins A, Januszewski A, O'Neal D. The early detection of atherosclerosis in type 1 diabetes: why, how and what to do about it. Cardiovasc Endocrinol Metab. 2019; 8(1): 14–27.
  35. Ferreira I, Hovind P, Schalkwijk CG, et al. Biomarkers of inflammation and endothelial dysfunction as predictors of pulse pressure and incident hypertension in type 1 diabetes: a 20 year life-course study in an inception cohort. Diabetologia. 2018; 61(1): 231–241.
  36. Machnica L, Deja G, Polanska J, et al. Blood pressure disturbances and endothelial dysfunction markers in children and adolescents with type 1 diabetes. Atherosclerosis. 2014; 237(1): 129–134.
  37. Sochett E, Noone D, Grattan M, et al. Relationship between serum inflammatory markers and vascular function in a cohort of adolescents with type 1 diabetes. Cytokine. 2017; 99: 233–239.
  38. Järvisalo MJ, Lehtimäki T, Raitakari OT. Determinants of arterial nitrate-mediated dilatation in children: role of oxidized low-density lipoprotein, endothelial function, and carotid intima-media thickness. Circulation. 2004; 109(23): 2885–2889.
  39. Tołwińska J, Głowińska-Olszewska B, Urban M, et al. [Ultrasonographic evaluation of selected parameters of the endothelial function in brachial arteries and IMT measurements in carotid arteries in children with diabetes type 1 using personal insulin pumps — preliminary report]. Pediatr Endocrinol Diabetes Metab. 2006; 12(3): 200–204.
  40. Lilje C, Cronan JC, Schwartzenburg EJ, et al. Intima-media thickness at different arterial segments in pediatric type 1 diabetes patients and its relationship with advanced glycation end products. Pediatr Diabetes. 2018; 19(3): 450–456.
  41. Perseghin G, Lattuada G, De Cobelli F, et al. Left ventricular function and energy homeostasis in patients with type 1 diabetes with and without microvascular complications. Int J Cardiol. 2012; 154(2): 111–115.
  42. Snell-Bergeon JK, Budoff MJ, Hokanson JE. Vascular calcification in diabetes: mechanisms and implications. Curr Diab Rep. 2013; 13(3): 391–402.
  43. de Graaf MA, Roos CJ, Mansveld JM, et al. Changes in ischaemia as assessed with single-photon emission computed tomography myocardial perfusion imaging in high-risk patients with diabetes without cardiac symptoms: relation with coronary atherosclerosis on computed tomography coronary angiography. Eur Heart J Cardiovasc Imaging. 2015; 16(8): 863–870.
  44. Głowińska B, Urban M, Peczyńska J, et al. [Selected adhesion molecules: sICAM-1 and sVCAM-1 as markers of endothelial dysfunction in diabetic children and adolescence]. Pol Merkur Lekarski. 2003; 14(81): 205–209.
  45. Pawłowski P, Urban M, Peczyńska J. [Could the expression of L-selectin be an early marker of arterial hypertension and microangiopathy in the course of type 1 diabetes mellitus in juvenile patients?]. Pediatr Endocrinol Diabetes Metab. 2005; 11(3): 147–152.
  46. Schram MT, Chaturvedi N, Schalkwijk C, et al. EURODIAB Prospective Complications Study. Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care. 2003; 26(7): 2165–2173.
  47. Verrotti A, Trotta D, Salladini C, et al. Preventing microvascular diabetic complications in children and adolescents: looking beyond glycaemic control. Expert Opin Pharmacother. 2003; 4(4): 525–532.
  48. Demirel F, Tepe D, Kara O, et al. Microvascular complications in adolescents with type 1 diabetes mellitus. J Clin Res Pediatr Endocrinol. 2013; 5(3): 145–149.
  49. Dunger DB. Banting Memorial Lecture 2016 Reducing lifetime risk of complications in adolescents with Type 1 diabetes. Diabet Med. 2017; 34(4): 460–466.
  50. Fröhlich-Reiterer EE, Huber J, Katz H, et al. [Microvascular and macrovascular complications in children and adolescents with type 1 diabetes mellitus]. Wien Med Wochenschr. 2010; 160(15-16): 414–418.
  51. Snell-Bergeon JK, Nadeau K. Cardiovascular disease risk in young people with type 1 diabetes. J Cardiovasc Transl Res. 2012; 5(4): 446–462.
  52. Bjornstad P, Donaghue KC, Maahs DM. Macrovascular disease and risk factors in youth with type 1 diabetes: time to be more attentive to treatment? Lancet Diabetes Endocrinol. 2018; 6(10): 809–820.