Vol 27, No 1 (2022)
Review paper
Published online: 2021-12-10

open access

Page views 5876
Article views/downloads 1054
Get Citation

Connect on Social Media

Connect on Social Media

Stereotactic radiotherapy for brain oligometastases

Marco Lupattelli1, Paolo Tini2, Valerio Nardone3, Cynthia Aristei1, Simona Borghesi4, Ernesto Maranzano5, Paola Anselmo5, Gianluca Ingrosso1, Letizia Deantonio6, Michela Buglione di Monale e Bastia7
Rep Pract Oncol Radiother 2022;27(1):15-22.

Abstract

Brain metastases, the most common metastases in adults, will develop in up to 40% of cancer patients, accounting for more than one-half of all intracranial tumors. They are most associated with breast and lung cancer, melanoma and, less frequently, colorectal and kidney carcinoma. 

MRI is the gold standard for diagnosis. For the treatment plan, CT images are co-registered and fused with a gadolinium-enhanced T1-weighted MRI where tumor volume and organs at risk are contoured. Alternatively, plain and contrast-enhanced CT scans are co-registered. Single-fraction stereotactic radiotherapy (SRT) is used to treat patients with good performance status and up to 4 lesions with a diameter of 30 mm or less that are distant from crucial brain function areas. Fractionated SRT (2–5 fractions) is used for larger lesions, in eloquent areas or in proximity to crucial or surgically inaccessible areas and to reduce treatment-related neurotoxicity. The single-fraction SRT dose, which depends on tumor diameter, impacts local control. Fractionated SRT may encompass different schedules. No randomized trial data compared the safety and efficacy of single and multiple fractions. Both single-fraction and fractionated SRT provide satisfactory local control rates, tolerance, a low risk of transient acute adverse events and of radiation necrosis the incidence of which correlated with the irradiated brain volume. 

Article available in PDF format

View PDF Download PDF file

References

  1. Soffietti R, Cornu P, Delattre JY, et al. EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol. 2006; 13(7): 674–681.
  2. Witzel I, Oliveira-Ferrer L, Pantel K, et al. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res. 2016; 18(1): 8.
  3. Brufsky AM, Mayer M, Rugo HS, et al. Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res. 2011; 17(14): 4834–4843.
  4. Lekanidi K, Evans AL, Shah J, et al. Pattern of brain metastatic disease according to HER-2 and ER receptor status in breast cancer patients. Clin Radiol. 2013; 68(10): 1070–1073.
  5. Quan AL, Videtic GMM, Suh JH. Brain metastases in small cell lung cancer. Oncology (Williston Park). 2004; 18(8): 961–72; discussion 974, 979.
  6. Hsiao SH, Lin HC, Chou YT, et al. Impact of epidermal growth factor receptor mutations on intracranial treatment response and survival after brain metastases in lung adenocarcinoma patients. Lung Cancer. 2013; 81(3): 455–461.
  7. Chukwueke U, Batchelor T, Brastianos P. Management of Brain Metastases in Patients With Melanoma. J Oncol Pract. 2016; 12(6): 536–542.
  8. Maranzano E, Casale M, Rispoli R, et al. LINAC-based radiosurgery for melanoma, sarcoma and renal cell carcinoma brain metastases. J Neurosurg Sci. 2020; 64(1): 37–43.
  9. Chahine G, Ibrahim T, Felefly T, et al. Colorectal cancer and brain metastases: An aggressive disease with a different response to treatment. Tumori. 2019; 105(5): 427–433.
  10. Khan M, Arooj S, Li R, et al. Tumor Primary Site and Histology Subtypes Role in Radiotherapeutic Management of Brain Metastases. Front Oncol. 2020; 10: 781.
  11. Patchell RA, Tibbs PA, Regine WF, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998; 280(17): 1485–1489.
  12. McPherson CM, Suki D, Feiz-Erfan I, et al. Adjuvant whole-brain radiation therapy after surgical resection of single brain metastases. Neuro Oncol. 2010; 12(7): 711–719.
  13. Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011; 29(2): 134–141.
  14. Gutzmer R, Vordermark D, Hassel JC, et al. Melanoma brain metastases — Interdisciplinary management recommendations 2020. Cancer Treat Rev. 2020; 89: 102083.
  15. Perlow HK, Dibs K, Liu K, et al. Whole-Brain Radiation Therapy Versus Stereotactic Radiosurgery for Cerebral Metastases. Neurosurg Clin N Am. 2020; 31(4): 565–573.
  16. Minniti G, Clarke E, Lanzetta G, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011; 6: 48.
  17. Fokas E, Henzel M, Surber G, et al. Stereotactic radiosurgery and fractionated stereotactic radiotherapy: comparison of efficacy and toxicity in 260 patients with brain metastases. J Neurooncol. 2012; 109(1): 91–98.
  18. Mahajan A, Ahmed S, Li J, et al. Postoperative Stereotactic Radiosurgery Versus Observation for Completely Resected Brain Metastases: Results of a Prospective Randomized Study. Int J Radiat Oncol Biol Phys. 2016; 96(2): S2.
  19. Lehrer EJ, Peterson JL, Zaorsky NG, et al. Single versus Multifraction Stereotactic Radiosurgery for Large Brain Metastases: An International Meta-analysis of 24 Trials. Int J Radiat Oncol Biol Phys. 2019; 103(3): 618–630.
  20. Gutschenritter T, Venur VA, Combs SE, et al. The Judicious Use of Stereotactic Radiosurgery and Hypofractionated Stereotactic Radiotherapy in the Management of Large Brain Metastases. Cancers (Basel). 2020; 13(1).
  21. Akeson P, Larsson EM, Kristoffersen DT, et al. Brain metastases--comparison of gadodiamide injection-enhanced MR imaging at standard and high dose, contrast-enhanced CT and non-contrast-enhanced MR imaging. Acta Radiol. 1995; 36(3): 300–306.
  22. Schellinger PD, Meinck HM, Thron A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neurooncol. 1999; 44(3): 275–281.
  23. Suzuki K, Yamamoto M, Hasegawa Y, et al. Magnetic resonance imaging and computed tomography in the diagnoses of brain metastases of lung cancer. Lung Cancer. 2004; 46(3): 357–360.
  24. Shaw E, Scott C, Souhami L, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000; 47(2): 291–298.
  25. Wiggenraad R, Verbeek-de Kanter A, Kal HB, et al. Dose-effect relation in stereotactic radiotherapy for brain metastases. A systematic review. Radiother Oncol. 2011; 98(3): 292–297.
  26. Kim YJ, Cho KHo, Kim JY, et al. Single-dose versus fractionated stereotactic radiotherapy for brain metastases. Int J Radiat Oncol Biol Phys. 2011; 81(2): 483–489.
  27. Fahrig A, Ganslandt O, Lambrecht U, et al. Hypofractionated stereotactic radiotherapy for brain metastases--results from three different dose concepts. Strahlenther Onkol. 2007; 183(11): 625–630.
  28. Narayana A, Chang J, Yenice K, et al. Hypofractionated stereotactic radiotherapy using intensity-modulated radiotherapy in patients with one or two brain metastases. Stereotact Funct Neurosurg. 2007; 85(2-3): 82–87.
  29. Saitoh Ji, Saito Y, Kazumoto T, et al. Therapeutic effect of linac-based stereotactic radiotherapy with a micro-multileaf collimator for the treatment of patients with brain metastases from lung cancer. Jpn J Clin Oncol. 2010; 40(2): 119–124.
  30. Märtens B, Janssen S, Werner M, et al. Hypofractionated stereotactic radiotherapy of limited brain metastases: a single-centre individualized treatment approach. BMC Cancer. 2012; 12: 497.
  31. Eaton BR, Gebhardt B, Prabhu R, et al. Hypofractionated radiosurgery for intact or resected brain metastases: defining the optimal dose and fractionation. Radiat Oncol. 2013; 8: 135.
  32. Brown PD, Ballman KV, Cerhan JH, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017; 18(8): 1049–1060.
  33. Abuodeh Y, Ahmed KA, Naghavi AO, et al. Postoperative Stereotactic Radiosurgery Using 5-Gy × 5 Sessions in the Management of Brain Metastases. World Neurosurg. 2016; 90: 58–65.
  34. Ling DC, Vargo JA, Wegner RE, et al. Postoperative stereotactic radiosurgery to the resection cavity for large brain metastases: clinical outcomes, predictors of intracranial failure, and implications for optimal patient selection. Neurosurgery. 2015; 76(2): 150–6; discussion 156.
  35. Minniti G, Esposito V, Clarke E, et al. Multidose stereotactic radiosurgery (9 Gy × 3) of the postoperative resection cavity for treatment of large brain metastases. Int J Radiat Oncol Biol Phys. 2013; 86(4): 623–629.
  36. Brennan C, Yang TJ, Hilden P, et al. A phase 2 trial of stereotactic radiosurgery boost after surgical resection for brain metastases. Int J Radiat Oncol Biol Phys. 2014; 88(1): 130–136.
  37. Ahmed KA, Freilich JM, Abuodeh Y, et al. Fractionated stereotactic radiotherapy to the post-operative cavity for radioresistant and radiosensitive brain metastases. J Neurooncol. 2014; 118(1): 179–186.
  38. Keller A, Doré M, Antoni D, et al. [Risk of radionecrosis after hypofractionated stereotactic radiotherapy targeting the postoperative resection cavity of brain metastases]. Cancer Radiother. 2017; 21(5): 377–388.
  39. Pessina F, Navarria P, Cozzi L, et al. Outcome Evaluation of Oligometastatic Patients Treated with Surgical Resection Followed by Hypofractionated Stereotactic Radiosurgery (HSRS) on the Tumor Bed, for Single, Large Brain Metastases. PLoS One. 2016; 11(6): e0157869.
  40. Chin LS, Ma L, DiBiase S. Radiation necrosis following gamma knife surgery: a case-controlled comparison of treatment parameters and long-term clinical follow up. J Neurosurg. 2001; 94(6): 899–904.
  41. Flickinger JC, Kondziolka D, Maitz AH, et al. Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys. 1998; 40(2): 273–278.
  42. Flickinger JC, Kondziolka D, Pollock BE, et al. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys. 1997; 38(3): 485–490.
  43. Inoue HK, Sato H, Seto Ki, et al. Five-fraction CyberKnife radiotherapy for large brain metastases in critical areas: impact on the surrounding brain volumes circumscribed with a single dose equivalent of 14 Gy (V14) to avoid radiation necrosis. J Radiat Res. 2014; 55(2): 334–342.
  44. Blanchard N, Bernier V, Anxionnat R, et al. [Radiosurgery of cerebral arteriovenous malformations: a prescription algorithm]. Cancer Radiother. 2009; 13(1): 1–10.
  45. Flickinger J, Kondziolka D, Lunsford L, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Int J Radiat Oncol Biol Phys. 2000; 46(5): 1143–1148.
  46. Lawrence YR, Li XA, el Naqa I, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010; 76(3 Suppl): S20–S27.
  47. Korytko T, Radivoyevitch T, Colussi V, et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys. 2006; 64(2): 419–424.
  48. Kased N, Huang K, Nakamura JL, et al. Gamma knife radiosurgery for brainstem metastases: the UCSF experience. J Neurooncol. 2008; 86(2): 195–205.
  49. Tishler RB, Loeffler JS, Lunsford LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993; 27(2): 215–221.
  50. Leber KA, Berglöff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998; 88(1): 43–50.
  51. Kondziolka D, Lunsford LD, McLaughlin MR, et al. Long-term outcomes after radiosurgery for acoustic neuromas. N Engl J Med. 1998; 339(20): 1426–1433.
  52. Stafford S, Pollock B, Leavitt J, et al. A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2003; 55(5): 1177–1181.
  53. Hayden Gephart MG, Hansasuta A, Balise RR, et al. Cochlea radiation dose correlates with hearing loss after stereotactic radiosurgery of vestibular schwannoma. World Neurosurg. 2013; 80(3-4): 359–363.
  54. Krengli M, Zanoletti E, Deantonio L. Radiation therapy in acoustic neuroma. In: Wenz F, Zanoletti E, Deantonio L. ed. Radiation Oncology. Springer International Publishing, New York 2018: 1–16.
  55. Gondi V, Hermann BP, Mehta MP, et al. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys. 2012; 83(4): e487–e493.
  56. Huang CF, Chiou SY, Wu MF, et al. Apparent diffusion coefficients for evaluation of the response of brain tumors treated by Gamma Knife surgery. J Neurosurg. 2010; 113 Suppl: 97–104.
  57. Farjam R, Tsien CI, Feng FY, et al. Physiological imaging-defined, response-driven subvolumes of a tumor. Int J Radiat Oncol Biol Phys. 2013; 85(5): 1383–1390.
  58. Kimura T, Sako K, Tanaka K, et al. Evaluation of the response of metastatic brain tumors to stereotactic radiosurgery by proton magnetic resonance spectroscopy, 201TlCl single-photon emission computerized tomography, and gadolinium-enhanced magnetic resonance imaging. J Neurosurg. 2004; 100(5): 835–841.
  59. Cicone F, Minniti G, Romano A, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging. 2015; 42(1): 103–111.
  60. Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet. 2004; 363(9422): 1665–1672.
  61. Nakamura JL, Verhey LJ, Smith V, et al. Dose conformity of gamma knife radiosurgery and risk factors for complications. Int J Radiat Oncol Biol Phys. 2001; 51(5): 1313–1319.
  62. Lupattelli M, Alì E, Ingrosso G, et al. Stereotactic Radiotherapy for Brain Metastases: Imaging Tools and Dosimetric Predictive Factors for Radionecrosis. J Pers Med. 2020; 10(3).
  63. Rusthoven CG, Yamamoto M, Bernhardt D, et al. Evaluation of First-line Radiosurgery vs Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study. JAMA Oncol. 2020; 6(7): 1028–1037.
  64. Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006; 295(21): 2483–2491.
  65. Petrovich Z, Yu C, Giannotta SL, et al. Survival and pattern of failure in brain metastasis treated with stereotactic gamma knife radiosurgery. J Neurosurg. 2002; 97(5 Suppl): 499–506.
  66. Sneed PK, Mendez J, Vemer-van den Hoek JGM, et al. Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg. 2015; 123(2): 373–386.
  67. Kohutek ZA, Yamada Y, Chan TA, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015; 125(1): 149–156.
  68. Trifiletti DM, Lee CC, Kano H, et al. Stereotactic Radiosurgery for Brainstem Metastases: An International Cooperative Study to Define Response and Toxicity. Int J Radiat Oncol Biol Phys. 2016; 96(2): 280–288.
  69. Ernst-Stecken A, Ganslandt O, Lambrecht U, et al. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol. 2006; 81(1): 18–24.
  70. Minniti G, D'Angelillo RM, Scaringi C, et al. Fractionated stereotactic radiosurgery for patients with brain metastases. J Neurooncol. 2014; 117(2): 295–301.
  71. Navarria P, Pessina F, Cozzi L, et al. Hypo-fractionated stereotactic radiotherapy alone using volumetric modulated arc therapy for patients with single, large brain metastases unsuitable for surgical resection. Radiat Oncol. 2016; 11: 76.
  72. Minniti G, Scaringi C, Paolini S, et al. Single-Fraction Versus Multifraction (3 × 9 Gy) Stereotactic Radiosurgery for Large (>2 cm) Brain Metastases: A Comparative Analysis of Local Control and Risk of Radiation-Induced Brain Necrosis. Int J Radiat Oncol Biol Phys. 2016; 95(4): 1142–1148.
  73. Giglio P, Gilbert M. Cerebral Radiation Necrosis. Neurologist. 2003; 9(4): 180–188.
  74. Glantz MJ, Burger PC, Friedman AH, et al. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994; 44(11): 2020–2027.
  75. Levin AV, Bidaut L, Hou P, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the CNS. Int J Radiat Oncol Biol Phys. 2011; 795: 1487–1495.
  76. Navarria P, Minniti G, Clerici E, et al. Brain metastases from primary colorectal cancer: is radiosurgery an effective treatment approach? Results of a multicenter study of the radiation and clinical oncology Italian association (AIRO). Br J Radiol. 2020; 93(1116): 20200951.