open access

Vol 26, No 1 (2021)
Research paper
Published online: 2021-01-22
Submitted: 2021-01-14
Get Citation

Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia

Lukas Knybel, Jakub Cvek, Radek Neuwirth, Otakar Jiravsky, Jan Hecko, Marek Penhaker, Marek Sramko, Josef Kautzner
DOI: 10.5603/RPOR.a2021.0020
·
Rep Pract Oncol Radiother 2021;26(1):128-137.

open access

Vol 26, No 1 (2021)
Original research articles
Published online: 2021-01-22
Submitted: 2021-01-14

Abstract

Background: Here we aimed to evaluate the respiratory and cardiac-induced motion of a ICD lead used as surrogate in the heart during stereotactic body radiotherapy (SBRT) of ventricular tachycardia (VT). Data provides insight regarding motion and motion variations during treatment.

Materials and methods: We analyzed the log files of surrogate motion during SBRT of ventricular tachycardia performed in 20 patients. Evaluated parameters included the ICD lead motion amplitudes; intrafraction amplitude variability; correlation error between the ICD lead and external markers; and margin expansion in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions to cover 90% or 95% of all amplitudes.

Results: In the SI, LL, and AP directions, respectively, the mean motion amplitudes were 5.0 ± 2.6, 3.4. ± 1.9, and 3.1 ± 1.6 mm. The mean intrafraction amplitude variability was 2.6 ± 0.9, 1.9 ± 1.3, and 1.6 ± 0.8 mm in the SI, LL, and AP directions, respectively. The margins required to cover 95% of ICD lead motion amplitudes were 9.5, 6.7, and 5.5 mm in the SI, LL, and AP directions, respectively. The mean correlation error was 2.2 ± 0.9 mm.

Conclusions: Data from online tracking indicated motion irregularities and correlation errors, necessitating an increased CTV-PTV margin of 3 mm. In 35% of cases, the motion variability exceeded 3 mm in one or more directions. We recommend verifying the correlation between CTV and surrogate individually for every patient, especially for targets with posterobasal localization where we observed the highest difference between the lead and CTV motion.

Abstract

Background: Here we aimed to evaluate the respiratory and cardiac-induced motion of a ICD lead used as surrogate in the heart during stereotactic body radiotherapy (SBRT) of ventricular tachycardia (VT). Data provides insight regarding motion and motion variations during treatment.

Materials and methods: We analyzed the log files of surrogate motion during SBRT of ventricular tachycardia performed in 20 patients. Evaluated parameters included the ICD lead motion amplitudes; intrafraction amplitude variability; correlation error between the ICD lead and external markers; and margin expansion in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions to cover 90% or 95% of all amplitudes.

Results: In the SI, LL, and AP directions, respectively, the mean motion amplitudes were 5.0 ± 2.6, 3.4. ± 1.9, and 3.1 ± 1.6 mm. The mean intrafraction amplitude variability was 2.6 ± 0.9, 1.9 ± 1.3, and 1.6 ± 0.8 mm in the SI, LL, and AP directions, respectively. The margins required to cover 95% of ICD lead motion amplitudes were 9.5, 6.7, and 5.5 mm in the SI, LL, and AP directions, respectively. The mean correlation error was 2.2 ± 0.9 mm.

Conclusions: Data from online tracking indicated motion irregularities and correlation errors, necessitating an increased CTV-PTV margin of 3 mm. In 35% of cases, the motion variability exceeded 3 mm in one or more directions. We recommend verifying the correlation between CTV and surrogate individually for every patient, especially for targets with posterobasal localization where we observed the highest difference between the lead and CTV motion.

Get Citation

Keywords

ventricular tachycardia; stereotactic body radiotherapy

About this article
Title

Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia

Journal

Reports of Practical Oncology and Radiotherapy

Issue

Vol 26, No 1 (2021)

Article type

Research paper

Pages

128-137

Published online

2021-01-22

DOI

10.5603/RPOR.a2021.0020

Bibliographic record

Rep Pract Oncol Radiother 2021;26(1):128-137.

Keywords

ventricular tachycardia
stereotactic body radiotherapy

Authors

Lukas Knybel
Jakub Cvek
Radek Neuwirth
Otakar Jiravsky
Jan Hecko
Marek Penhaker
Marek Sramko
Josef Kautzner

References (34)
  1. Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. 1997; 337(22): 1576–1583.
  2. Connolly S. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg . Canadian Implantable Defibrillator Study. Eur Heart J. 2000; 21(24): 2071–2078.
  3. Moss AJ, Zareba W, Hall WJ, et al. Multicenter Automatic Defibrillator Implantation Trial II Investigators. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002; 346(12): 877–883.
  4. Nanthakumar K, Epstein AE, Kay GN, et al. Prophylactic implantable cardioverter-defibrillator therapy in patients with left ventricular systolic dysfunction: a pooled analysis of 10 primary prevention trials. J Am Coll Cardiol. 2004; 44(11): 2166–2172.
  5. Mallidi J, Nadkarni GN, Berger RD, et al. Meta-analysis of catheter ablation as an adjunct to medical therapy for treatment of ventricular tachycardia in patients with structural heart disease. Heart Rhythm. 2011; 8(4): 503–510.
  6. Marchlinski FE, Haffajee CI, Beshai JF, et al. Long-Term Success of Irrigated Radiofrequency Catheter Ablation of Sustained Ventricular Tachycardia: Post-Approval THERMOCOOL VT Trial. J Am Coll Cardiol. 2016; 67(6): 674–683.
  7. Sapp JL, Wells GA, Parkash R, et al. Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. N Engl J Med. 2016; 375(2): 111–121.
  8. Tokuda M, Kojodjojo P, Tung S, et al. Acute failure of catheter ablation for ventricular tachycardia due to structural heart disease: causes and significance. J Am Heart Assoc. 2013; 2(3): e000072.
  9. Loo BW, Soltys SG, Wang L, et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. 2015; 8(3): 748–750.
  10. Cvek J, Neuwirth R, Knybel L, et al. Cardiac radiosurgery for malignant ventricular tachycardia. Cureus. 2014; 6(7).
  11. Neuwirth R, Cvek J, Knybel L, et al. Stereotactic radiosurgery for ablation of ventricular tachycardia. EP Europace. 2019; 21(7): 1088–1095.
  12. Gianni C, Mohanty S, Trivedi C, et al. Alternative Approaches for Ablation of Resistant Ventricular Tachycardia. Card Electrophysiol Clin. 2017; 9(1): 93–98.
  13. Cuculich PS, Schill MR, Kashani R, et al. Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia. N Engl J Med. 2017; 377(24): 2325–2336.
  14. Robinson CG, Samson PP, Moore KM, et al. Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Circulation. 2019; 139(3): 313–321.
  15. Knutson NC, Samson PP, Hugo GD, et al. Radiation Therapy Workflow and Dosimetric Analysis from a Phase 1/2 Trial of Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Int J Radiat Oncol Biol Phys. 2019; 104(5): 1114–1123.
  16. Jumeau R, Ozsahin M, Schwitter J, et al. Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation. Radiother Oncol. 2018; 128(2): 189–191.
  17. Haskova J, Peichl P, Pirk J, et al. Stereotactic radiosurgery as a treatment for recurrent ventricular tachycardia associated with cardiac fibroma. HeartRhythm Case Rep. 2019; 5(1): 44–47.
  18. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002; 53(4): 822–834.
  19. Chen T, Qin S, Xu X, et al. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management. Radiother Oncol. 2014; 112(3): 365–370.
  20. Tong Y, Yin Y, Lu J, et al. Quantification of heart, pericardium, and left ventricular myocardium movements during the cardiac cycle for thoracic tumor radiotherapy. Onco Targets Ther. 2018; 11: 547–554.
  21. Zei PC, Soltys SG, Loo B, et al. First-in-man treatment of arrhythmia (ventricular tachycardia) using stereotactic radiosurgery. Heart Rhythm. 2013; 10: 1–554.
  22. Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002; 29(3): 334–344.
  23. Hoogeman M, Prévost JB, Nuyttens J, et al. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009; 74(1): 297–303.
  24. Pepin EW, Wu H, Zhang Y, et al. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011; 38(7): 4036–4044.
  25. Dieterich S, Green O, Booth J. SBRT targets that move with respiration. Phys Med. 2018; 56: 19–24.
  26. Knybel L, Cvek J, Molenda L, et al. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume. Int J Radiat Oncol Biol Phys. 2016; 96(4): 751–758.
  27. Seppenwoolde Y, Berbeco RI, Nishioka S, et al. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007; 34(7): 2774–2784.
  28. Braunstein SE, Descovich M, Johnson JA, et al. Effect of Stereotactic Tracking Method on Local Control in Early Stage Non-Small Cell Lung Cancer (NSCLC). Int J Radiat Oncol Biol Phys. 2014; 90(1): S19.
  29. Ross C, Hussey D, Pennington E, et al. Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Rad Oncol Biol Phys. 1990; 18(3): 671–677.
  30. Christ Z, Shang CY, Gibbard G, et al. Impact of Rotational Deviations on a Single Fiducial Based Respiratory Tracking. Int J Radiat Oncol Biol Phys. 2017; 99(2): E650.
  31. Wu X, Dieterich S, Orton CG. Point/counterpoint. Only a single implanted marker is needed for tracking lung cancers for IGRT. Med Phys. 2009; 36(11): 4845–4847.
  32. Fuchs E, Müller MF, Oswald H, et al. Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail. 2004; 6(6): 715–722.
  33. Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR, et al. Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol. 2011; 56(17): 5445–5468.
  34. Teo BK, Dieterich S, Blanck O, et al. SU-FF-T-559: Effect of Cardiac Motion On the Cyberknife Synchrony Tracking System for Radiosurgical Cardiac Ablation. Med Phys. 2009; 36(6Part17): 2653–2653.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: journals@viamedica.pl