Budowa i funkcja ludzkich antygenów zgodności tkankowej. Część 3. Rola antygenów MHC w chorobach reumatycznych
Abstract
Ekspresja określonych alleli zgodności tkankowej stanowi czynnik ryzyka chorób reumatycznych. W reumatoidalnym zapaleniu stawów jest to obecność antygenów HLA-DRB1, z charakterystyczną sekwencją pięciu aminokwasów (glutamina, lizyna, arginina, alanina) w pozycjach od 70 do 74 łańcucha, nazywanych najczęściej wspólnym epitopem. Charakterystyczna dla zesztywniającego zapalenie stawów kręgosłupa jest ekspresja antygenu zgodności tkankowej HLA-B27, który może prezentować nieprawidłowo przetworzone peptydy antygenowe. Wydaje się, że cząsteczki HLA-B27 mogą z większą wydajnością prezentować autoreaktywnym limfocytom T patogenne peptydy bakteryjne albo endogenne peptydy artrytogenne. W biologii chorób reumatycznych ważną rolę mogą odgrywać także polimorfizmy pojedynczego nukleotydu (SNP, single nucleotide polymorphism) czy mechanizmy epigenetyczne, wpływające na ekspresję genów.
Forum Reumatol. 2019, tom 5, nr 1: 33–42
Keywords: HLA-DRB1wspólny epitopHLA-B27prezentacja antygenu
References
- MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000; 43(1): 30–37.
- Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016; 388(10055): 2023–2038.
- Knevel R, Huizinga TWJ, Kurreeman F. Genomic Influences on Susceptibility and Severity of Rheumatoid Arthritis. Rheum Dis Clin North Am. 2017; 43(3): 347–361.
- Terao C, Raychaudhuri S, Gregersen PK. Recent Advances in Defining the Genetic Basis of Rheumatoid Arthritis. Annu Rev Genomics Hum Genet. 2016; 17: 273–301.
- Yarwood A, Huizinga TWJ, Worthington J. The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford). 2016; 55(2): 199–209.
- ROSE HM, RAGAN C. Differential agglutination of normal and sensitized sheep erythrocytes by sera of patients with rheumatoid arthritis. Proc Soc Exp Biol Med. 1948; 68(1): 1–6.
- Viatte S, Barton A. Genetics of rheumatoid arthritis susceptibility, severity, and treatment response. Semin Immunopathol. 2017; 39(4): 395–408.
- van Drongelen V, Holoshitz J. Human Leukocyte Antigen-Disease Associations in Rheumatoid Arthritis. Rheum Dis Clin North Am. 2017; 43(3): 363–376.
- Kampstra ASB, Toes REM. HLA class II and rheumatoid arthritis: the bumpy road of revelation. Immunogenetics. 2017; 69(8-9): 597–603.
- Michou L, Croiseau P, Petit-Teixeira E, et al. European Consortium on Rheumatoid Arthritis Families. Validation of the reshaped shared epitope HLA-DRB1 classification in rheumatoid arthritis. Arthritis Res Ther. 2006; 8(3): R79.
- de Almeida DE, Ling S, Holoshitz J. New insights into the functional role of the rheumatoid arthritis shared epitope. FEBS Lett. 2011; 585(23): 3619–3626.
- Derksen VF, Huizinga TWJ, van der Woude D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol. 2017; 39(4): 437–446.
- van der Woude D, Toes REM. The contribution of autoantibodies to post-translationally modified proteins to inflammatory arthritis. Curr Opin Rheumatol. 2017; 29(2): 195–200.
- Scally SW, Petersen J, Law SC, et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med. 2013; 210(12): 2569–2582.
- Sidney J, Becart S, Zhou M, et al. Citrullination only infrequently impacts peptide binding to HLA class II MHC. PLoS One. 2017; 12(5): e0177140.
- Kampstra ASB, van Heemst J, Moustakas AK, et al. The increased ability to present citrullinated peptides is not unique to HLA-SE molecules: arginine-to-citrulline conversion also enhances peptide affinity for HLA-DQ molecules. Arthritis Res Ther. 2016; 18(1): 254.
- Reed E, Jiang X, Kharlamova N, et al. Antibodies to carbamylated α-enolase epitopes in rheumatoid arthritis also bind citrullinated epitopes and are largely indistinct from anti-citrullinated protein antibodies. Arthritis Res Ther. 2016; 18(1): 96.
- Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012; 44(3): 291–296.
- Viatte S, Plant D, Han B, et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA. 2015; 313(16): 1645–1656.
- Han B, Diogo D, Eyre S, et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am J Hum Genet. 2014; 94(4): 522–532.
- Okada Y, Suzuki A, Ikari K, et al. Contribution of a Non-classical HLA Gene, HLA-DOA, to the Risk of Rheumatoid Arthritis. Am J Hum Genet. 2016; 99(2): 366–374.
- Zanelli E, Breedveld FC, de Vries RR. HLA association with autoimmune disease: a failure to protect? Rheumatology (Oxford). 2000; 39(10): 1060–1066.
- Singal DP, Li J, Zhu Y. HLA class III region and susceptibility to rheumatoid arthritis. Clin Exp Rheumatol. 2000; 18(4): 485–491.
- Yau ACY, Tuncel J, Haag S, et al. Conserved 33-kb haplotype in the MHC class III region regulates chronic arthritis. Proc Natl Acad Sci U S A. 2016; 113(26): E3716–E3724.
- van Heemst J, Jansen DT, Polydorides S, et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat Commun. 2015; 6: 6681.
- Lee YH, Bae SC, Kim JH, et al. Meta-analysis of the association between functional MICA-TM polymorphisms and systemic lupus erythematosus, rheumatoid arthritis and ankylosing spondylitis. Z Rheumatol. 2015; 74(2): 146–152.
- Martinez A, Fernandez-Arquero M, Balsa A, et al. Primary association of a MICA allele with protection against rheumatoid arthritis. Arthritis Rheum. 2001; 44(6): 1261–1265.
- Kirsten H, Petit-Teixeira E, Scholz M, et al. Association of MICA with rheumatoid arthritis independent of known HLA-DRB1 risk alleles in a family-based and a case control study. Arthritis Res Ther. 2009; 11(3): R60.
- López-Arbesu R, Ballina-García FJ, Alperi-López M, et al. MHC class I chain-related gene B (MICB) is associated with rheumatoid arthritis susceptibility. Rheumatology (Oxford). 2007; 46(3): 426–430.
- Iwaszko M, Świerkot J, Kolossa K, et al. Polymorphisms within the human leucocyte antigen-E gene and their associations with susceptibility to rheumatoid arthritis as well as clinical outcome of anti-tumour necrosis factor therapy. Clin Exp Immunol. 2015; 182(3): 270–277.
- Rizzo R, Farina I, Bortolotti D, et al. HLA-G may predict the disease course in patients with early rheumatoid arthritis. Hum Immunol. 2013; 74(4): 425–432.
- Lemire M. On the association between rheumatoid arthritis and classical HLA class I and class II alleles predicted from single-nucleotide polymorphism data. BMC Proc. 2009; 3 Suppl 7: S33.
- Vignal C, Bansal AT, Balding DJ, et al. Genetic association of the major histocompatibility complex with rheumatoid arthritis implicates two non-DRB1 loci. Arthritis Rheum. 2009; 60(1): 53–62.
- Toussirot E, Sauvageot C, Chabod J, et al. The association of HLA-DM genes with rheumatoid arthritis in Eastern France. Hum Immunol. 2000; 61(3): 303–308.
- Moxley G, Han J. HLA DMA and DMB show no association with rheumatoid arthritis in US Caucasians. Eur J Immunogenet. 2001; 28(5): 539–543.
- Eike MC, Skinningsrud B, Ronninger M, et al. CIITA gene variants are associated with rheumatoid arthritis in Scandinavian populations. Genes Immun. 2012; 13(5): 431–436.
- Bowness P. HLA-B27. Annu Rev Immunol. 2015; 33: 29–48.
- Vitulano C, Tedeschi V, Paladini F, et al. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis. Clin Exp Immunol. 2017; 190(3): 281–290.
- Urban RG, Chicz RM, Lane WS, et al. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci U S A. 1994; 91(4): 1534–1538.
- Uchanska-Ziegler B, Ziegler A, Schmieder P. Structural and dynamic features of HLA-B27 subtypes. Curr Opin Rheumatol. 2013; 25(4): 411–8.
- Abualrous ET, Fritzsche S, Hein Z, et al. F pocket flexibility influences the tapasin dependence of two differentially disease-associated MHC Class I proteins. Eur J Immunol. 2015; 45(4): 1248–1257.
- Cortes A, Hadler J, Pointon JP, et al. International Genetics of Ankylosing Spondylitis Consortium (IGAS), Australo-Anglo-American Spondyloarthritis Consortium (TASC), Groupe Française d'Etude Génétique des Spondylarthrites (GFEGS), Nord-Trøndelag Health Study (HUNT), Spondyloarthritis Research Consortium of Canada (SPARCC), Wellcome Trust Case Control Consortium 2 (WTCCC2). Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013; 45(7): 730–738.
- Reeves E, Colebatch-Bourn A, Elliott T, et al. Functionally distinctERAP1allotype combinations distinguish individuals with Ankylosing Spondylitis. Proceedings of the National Academy of Sciences. 2014; 111(49): 17594–17599.
- Sanz-Bravo A, Alvarez-Navarro C, Martín-Esteban A, et al. Ranking the Contribution of Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) Polymorphisms to Shaping the HLA-B*27 Peptidome. Mol Cell Proteomics. 2018; 17(7): 1308–1323.
- Evans DM, Spencer CCA, Pointon JJ, et al. Spondyloarthritis Research Consortium of Canada (SPARCC), Australo-Anglo-American Spondyloarthritis Consortium (TASC), Wellcome Trust Case Control Consortium 2 (WTCCC2). Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011; 43(8): 761–767.
- Cortes A, Pulit SL, Leo PJ, et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat Commun. 2015; 6: 7146.
- Vargas-Alarcón G, Gamboa R, Zuñiga J, et al. Association study of LMP gene polymorphisms in Mexican patients with spondyloarthritis. Hum Immunol. 2004; 65(12): 1437–1442.
- Haroon N, Maksymowych W, Rahman P, et al. Radiographic severity in ankylos-ing spondylitis is associated with polymorphism in large multifunctionalpeptidase 2 (LMP2) in the SPARCC cohort. Arthritis Rheum. 2011; 64: 1119–26.
- Qian Y, Wang G, Xue F, et al. Genetic association between TAP1 and TAP2 polymorphisms and ankylosing spondylitis: a systematic review and meta-analysis. Inflamm Res. 2017; 66(8): 653–661.
- Illing PT, Vivian JP, Dudek NL, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012; 486(7404): 554–558.
- Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014; 57(1): 44–51.
- Antoniou AN, Guiliano DB, Lenart I, et al. The oxidative folding and misfolding of human leukocyte antigen-b27. Antioxid Redox Signal. 2011; 15(3): 669–684.
- McHugh K, Bowness P. The link between HLA-B27 and SpA--new ideas on an old problem. Rheumatology (Oxford). 2012; 51(9): 1529–1539.
- Wong-Baeza I, Ridley A, Shaw J, et al. KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis. J Immunol. 2013; 190(7): 3216–3224.
- Robinson PC, Brown MA. Genetics of ankylosing spondylitis. Mol Immunol. 2014; 57(1): 2–11.
- Díaz-Peña R, López-Vázquez A, López-Larrea C. Old and new HLA associations with ankylosing spondylitis. Tissue Antigens. 2012; 80(3): 205–213.
- Wei JCC, Tsai WC, Lin HS, et al. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology (Oxford). 2004; 43(7): 839–842.
- Yamaguchi A, Tsuchiya N, Mitsui H, et al. Association of HLA-B39 with HLA-B27-negative ankylosing spondylitis and pauciarticular juvenile rheumatoid arthritis in Japanese patients. Evidence for a role of the peptide-anchoring B pocket. Arthritis Rheum. 1995; 38(11): 1672–1677.
- Bown MA, Jin R, Wordsworth BP, et al. et al.. HLA Class I and II associations of anky-losing spondylitis. Arthritis Rheum. 2009; 60(Suppl 10): 11716–11721.
- Breban M, Costantino F, André C, et al. Revisiting MHC genes in spondyloarthritis. Curr Rheumatol Rep. 2015; 17(6): 516.
- Paladini F, Belfiore F, Cocco E, et al. HLA-E gene polymorphism associates with ankylosing spondylitis in Sardinia. Arthritis Res Ther. 2009; 11(6): R171.
- Santos MR, Couto AR, Foroni I, et al. Non-classical human leucocyte antigens in ankylosing spondylitis: possible association with HLA-E and HLA-F. RMD Open. 2018; 4(1): e000677.
- Zhou X, Wang J, Zou H, et al. MICA, a gene contributing strong susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2014; 73(8): 1552–1557.
- Lenz TL, Deutsch AJ, Han B, et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet. 2015; 47(9): 1085–1090.
- Wei WH, Loh CY, Worthington J, et al. Immunochip Analyses of Epistasis in Rheumatoid Arthritis Confirm Multiple Interactions within MHC and Suggest Novel Non-MHC Epistatic Signals. J Rheumatol. 2016; 43(5): 839–845.
- Wei WH, Bowes J, Plant D, et al. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis. Sci Rep. 2016; 6: 25014.
- Spurlock CF, Tossberg JT, Olsen NJ, et al. Cutting Edge: Chronic NF-κB Activation in CD4+ T Cells in Rheumatoid Arthritis Is Genetically Determined by HLA Risk Alleles. J Immunol. 2015; 195(3): 791–795.
- Khan MA. An Update on the Genetic Polymorphism of HLA-B*27 With 213 Alleles Encompassing 160 Subtypes (and Still Counting). Curr Rheumatol Rep. 2017; 19(2): 9.
- Saad MN, Mabrouk MS, Eldeib AM, et al. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis. J Adv Res. 2016; 7(1): 1–16.
- Kim K, Bang SY, Lee HS, et al. Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate, Wellcome Trust Case Control Consortium. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012; 44(12): 1336–1340.
- Reveille JD, Sims AM, Danoy P, et al. Australo-Anglo-American Spondyloarthritis Consortium (TASC). Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010; 42(2): 123–127.
- Khan MA. Polymorphism of HLA-B27: 105 subtypes currently known. Curr Rheumatol Rep. 2013; 15(10): 362.
- Blanco-Gelaz MA, Suárez-Alvarez B, González S, et al. The amino acid at position 97 is involved in folding and surface expression of HLA-B27. Int Immunol. 2006; 18(1): 211–220.
- Isernhagen A, Malzahn D, Bickeböller H, et al. Impact of the MICA-129Met/Val Dimorphism on NKG2D-Mediated Biological Functions and Disease Risks. Front Immunol. 2016; 7: 588.
- Achour Y, Ben Hamad M, Chaabane S, et al. Analysis of two susceptibility SNPs in HLA region and evidence of interaction between rs6457617 in HLA-DQB1 and HLA-DRB1*04 locus on Tunisian rheumatoid arthritis. J Genet. 2017; 96(6): 911–918.
- Li Z, Brown MA. Progress of genome-wide association studies of ankylosing spondylitis. Clin Transl Immunology. 2017; 6(12): e163.
- Ramsuran V, Kulkarni S, O'huigin C, et al. Epigenetic regulation of differential HLA-A allelic expression levels. Hum Mol Genet. 2015; 24(15): 4268–4275.
- Moreau P, Flajollet S, Carosella ED. Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med. 2009; 13(9B): 2973–2989.
- Wright KL, Ting JPY. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol. 2006; 27(9): 405–412.
- Kato M, Yasuda S, Atsumi T. The role of genetics and epigenetics in rheumatic diseases: are they really a target to be aimed at? Rheumatol Int. 2018; 38(8): 1333–1338.
- Kolarz B, Majdan M. Epigenetyczne uwarunkowania reumatoidalnego zapalenia stawów: wpływ metylacji DNA i modyfikacji białek histonowych. Postępy Hig Med Dosw (online. 2017; 71: 1070–1079.
- Ballestar E, Li T. New insights into the epigenetics of inflammatory rheumatic diseases. Nat Rev Rheumatol. 2017; 13(10): 593–605.
- Liu Y, Aryee MJ, Padyukov L, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013; 31(2): 142–147.
- van Steenbergen HW, Luijk R, Shoemaker R, et al. Differential methylation within the major histocompatibility complex region in rheumatoid arthritis: a replication study. Rheumatology (Oxford). 2014; 53(12): 2317–2318.
- Guo S, Zhu Qi, Jiang T, et al. Genome-wide DNA methylation patterns in CD4+ T cells from Chinese Han patients with rheumatoid arthritis. Mod Rheumatol. 2017; 27(3): 441–447.