Tom 15, Nr 1 (2019)
Artykuł przeglądowy
Opublikowany online: 2019-05-29

dostęp otwarty

Wyświetlenia strony 1828
Wyświetlenia/pobrania artykułu 5231
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Rola mikrobioty jelitowej w patogenezie i przebiegu wybranych schorzeń układu nerwowego

Justyna Oziom1, Sławomir Budrewicz1
Pol. Przegl. Neurol 2019;15(1):1-11.

Streszczenie

Etiologia wielu chorób układu nerwowego ma charakter wieloczynnikowy i wciąż nie jest do końca poznana. W ostatnich
latach zyskuje na popularności teoria dotycząca zmian w obrębie mikrobioty jelitowej, które predysponują do rozwoju
konkretnej jednostki chorobowej. W badaniach wskazuje się, że w przebiegu niektórych chorób zachodzą specyficzne
zmiany ilościowe i jakościowe mikroflory, które często korelują z obecnością i nasileniem poszczególnych objawów.
Skład i funkcjonowanie mikrobioty w dużym stopniu zależą od takich czynników, jak dieta, przyjmowane leki czy tryb
życia. Z tego powodu wszelkie odchylenia od prawidłowego stanu należy rozpatrywać dwojako — jako objaw choroby
lub jej konsekwencja. Znajomość przemian dokonujących się w mikroflorze jelitowej może w przyszłości pozwolić na
zmniejszenie prawdopodobieństwa zachorowania, a także na złagodzenie przebiegu choroby za pomocą odpowiednio
dobranych probiotyków, które być może znajdą także zastosowanie w profilaktyce schorzeń neurologicznych.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015; 17(5): 565–576.
  2. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014; 157(1): 121–141.
  3. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402): 207–214.
  4. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006; 124(4): 837–848.
  5. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005; 308(5728): 1635–1638.
  6. Rutayisire E, Huang K, Liu Y, et al. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol. 2016; 16(1): 86.
  7. Arumugam M, Raes J, Pelletier E, et al. MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature. 2011; 473(7346): 174–180.
  8. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334(6052): 105–108.
  9. Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016; 165(6): 1332–1345.
  10. Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011; 93(5): 1062–1072.
  11. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009; 9(4): 311–326.
  12. Barrett E, Ross RP, O'Toole PW, et al. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012; 113(2): 411–417.
  13. Skonieczna-Żydecka K, Łoniewski I, Maciejewska D, et al. Intestinal microbiota and nutrients as determinants of nervous system function. Part I. Gastrointestinal microbiota. Aktualn Neurol. 2017; 17(4): 181–188.
  14. Lee SH. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res. 2015; 13(1): 11–18.
  15. Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014; 14: 189.
  16. Carabotti M, Scirocco A, Maselli MA, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015; 28(2): 203–209.
  17. Toribio-Mateas M. Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions. Microorganisms. 2018; 6(2).
  18. Amaral DG. The promise and the pitfalls of autism research: an introductory note for new autism researchers. Brain Res. 2011; 1380: 3–9.
  19. Wasilewska J, Jarocka-Cyrta E, Kaczmarski M. [Gastrointestinal abnormalities in children with autism]. Pol Merkur Lekarski. 2009; 27(157): 40–43.
  20. Onore CE, Nordahl CWu, Young GS, et al. Levels of soluble platelet endothelial cell adhesion molecule-1 and P-selectin are decreased in children with autism spectrum disorder. Biol Psychiatry. 2012; 72(12): 1020–1025.
  21. Haba R, Shintani N, Onaka Y, et al. Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: Possible role of activation of the central amygdala. Behav Brain Res. 2012; 228(2): 423–431.
  22. Lee Y, Park JY, Lee EH, et al. Rapid Assessment of Microbiota Changes in Individuals with Autism Spectrum Disorder Using Bacteria-derived Membrane Vesicles in Urine. Exp Neurobiol. 2017; 26(5): 307–317.
  23. Strati F, Cavalieri D, Albanese D, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017; 5(1): 24.
  24. Williams BL, Hornig M, Buie T, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One. 2011; 6(9): e24585.
  25. Kang DW, Ilhan ZE, Isern NG, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018; 49: 121–131.
  26. Wu H, Tremaroli V, Bäckhed F. Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends Endocrinol Metab. 2015; 26(12): 758–770.
  27. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008; 111: 1–66.
  28. Cammarota G, Ianiro G, Bibbò S, et al. Gut microbiota modulation: probiotics, antibiotics or fecal microbiota transplantation? Intern Emerg Med. 2014; 9(4): 365–373.
  29. Bailey MT, Cryan JF. The microbiome as a key regulator of brain, behavior and immunity: Commentary on the 2017 named series. Brain Behav Immun. 2017; 66: 18–22.
  30. Mu Q, Tavella VJ, Luo XM. Role of in Human Health and Diseases. Front Microbiol. 2018; 9: 757.
  31. Bowman KA, Broussard EK, Surawicz CM. Fecal microbiota transplantation: current clinical efficacy and future prospects. Clin Exp Gastroenterol. 2015; 8: 285–291.
  32. Kang DW, Adams JB, Gregory AC, et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017; 5(1): 10.
  33. Cersosimo MG, Raina GB, Pecci C, et al. Gastrointestinal manifestations in Parkinson's disease: prevalence and occurrence before motor symptoms. J Neurol. 2013; 260(5): 1332–1338.
  34. Tsuang D, Leverenz JB, Lopez OL, et al. APOE ε4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 2013; 70(2): 223–228.
  35. Edwards LL, Quigley E, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson's disease: Frequency and pathophysiology. Neurology. 1992; 42(4): 726–732.
  36. Charlett A, Dobbs RJ, Dobbs SM, et al. Parkinsonism: siblings share Helicobacter pylori seropositivity and facets of syndrome. Acta Neurol Scand. 1999; 99(1): 26–35.
  37. Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord. 2015; 30(3): 350–358.
  38. Minato T, Maeda T, Fujisawa Y, et al. Progression of Parkinson's disease is associated with gut dysbiosis: Two-year follow-up study. PLoS One. 2017; 12(11): e0187307.
  39. Vizcarra JA, Wilson-Perez HE, Espay AJ. The power in numbers: gut microbiota in Parkinson's disease. Mov Disord. 2015; 30(3): 296–298.
  40. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011; 108(38): 16050–16055.
  41. Mäger I, Roberts TC, Wood MJa, et al. From gut to brain: bioencapsulated therapeutic protein reduces amyloid load upon oral delivery. Mol Ther. 2014; 22(3): 485–486.
  42. Schwartz K, Boles BR. Microbial amyloids--functions and interactions within the host. Curr Opin Microbiol. 2013; 16(1): 93–99.
  43. Asti A, Gioglio L. Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J Alzheimers Dis. 2014; 39(1): 169–179.
  44. Tran L, Greenwood-Van Meerveld B. Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci. 2013; 68(9): 1045–1056.
  45. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012; 488(7410): 178–184.
  46. Mosconi L, Murray J, Davies M, et al. Nutrient intake and brain biomarkers of Alzheimer's disease in at-risk cognitively normal individuals: a cross-sectional neuroimaging pilot study. BMJ Open. 2014; 4(6): e004850.
  47. Rosas HD, Doros G, Bhasin S, et al. A systems-level "misunderstanding": the plasma metabolome in Huntington's disease. Ann Clin Transl Neurol. 2015; 2(7): 756–768.
  48. Cantarel BL, Waubant E, Chehoud C, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015; 63(5): 729–734.
  49. Wekerle H. Brain Autoimmunity and Intestinal Microbiota: 100 Trillion Game Changers. Trends Immunol. 2017; 38(7): 483–497.
  50. Cekanaviciute E, Yoo B, Runia T, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017; 114(40): 10713–10718.
  51. Ochoa-Repáraz J, Mielcarz DW, Wang Y, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010; 3(5): 487–495.
  52. Apetoh L, Quintana FJ, Pot C, et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol. 2010; 11(9): 854–861.
  53. Rothhammer V, Borucki DM, Tjon EC, et al. Control of autoimmune CNS inflammation by astrocytes. Semin Immunopathol. 2015; 37(6): 625–638.
  54. Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015; 18(7): 965–977.