Vol 81, Supp. I (2023): Zeszyty Edukacyjne 1/2023
Opinie i stanowiska ekspertów
Published online: 2023-09-27

open access

Page views 458
Article views/downloads 291
Get Citation

Connect on Social Media

Connect on Social Media

Znaczenie szczepień przeciwko pneumokokom w redukcji ryzyka sercowo-naczyniowego pacjentów kardiologicznych. Opinia ekspertów Komisji Profilaktyki Polskiego Towarzystwa Kardiologicznego wsparta przez Polskie Towarzystwo Wakcynologiczne

Artur Mamcarz1, Marcin Wełnicki1, Jarosław Drożdż2, Marcin Grabowski3, Piotr Jankowski4, Ernest Kuchar5, Przemysław Leszek6, Przemysław Mitkowski7, Jacek Wysocki8
DOI: 10.33963/v.kp.96988

Abstract

Choroby układu oddechowego stały się w ostatnich latach czwartą najczęstszą przyczyną zgonów w Polsce. Infekcja dróg oddechowych, zwłaszcza zapalenie płuc, może prowadzić do zaostrzenia przewlekłej choroby układu krążenia. Streptococcus pneumoniae jest najczęstszym bakteryjnym patogenem powodującym pozaszpitalne zapalenie płuc. Pneumokoki są również najczęstszym patogenem wikłającym przebieg grypy. Zapalenie płuc, zwłaszcza inwazyjna choroba pneumokokowa, wiąże się z ryzykiem zgonu w przebiegu niewydolności oddechowej lub posocznicy, a także z pogorszeniem rokowania istniejącej choroby układu krążenia. Pomimo to zalecenia dotyczące szczepienia przeciwko pneumokokom nadal nie są dobrze ugruntowane w wytycznych kardiologicznych. Celem niniejszego dokumentu jest podsumowanie aktualnej wiedzy na temat znaczenia profilaktyki inwazyjnej choroby pneumokokowej w kontekście pacjentów z chorobami układu sercowo-naczyniowego.

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. CSO: mortality in 2021, death by cause. Preliminary data [in Polish]. https://stat.gov.pl/obszary-tematyczne/ludnosc/statystyka-przyczyn-zgonow/umieralnosc w-2021-roku-zgony-wedlug-przyczyn-dane-wstepne,10,3.html (21.11.2022).
  2. Polish Ministry of Health. Health Needs Maps: Database of System and Implementation Analysis [in Polish]. http://www.mpz.mz.gov.pl (Lipiec 2022).
  3. Ieven M, Coenen S, Loens K, et al. Aetiology of lower respiratory tract infection in adults in primary care: a prospective study in 11 European countries. Clin Microbiol Infect. 2018; 24(11): 1158–1163.
  4. Antczak A, Tworek D. Pneumonia in adults [in Polish]. Termedia, Poznań 2022.
  5. Klein EY, Monteforte B, Gupta A, et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Respir Viruses. 2016; 10(5): 394–403.
  6. Devine VT, Cleary DW, Jefferies JMC, et al. The rise and fall of pneumococcal serotypes carried in the PCV era. Vaccine. 2017; 35(9): 1293–1298.
  7. Siegel SJ, Roche AM, Weiser JN. Influenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source. Cell Host Microbe. 2014; 16(1): 55–67.
  8. Mastalerz-Migas A, Kuchar E, Nitsch-Osuch A, et al. Recommendations for the prevention, diagnosis and treatment of inFLUenza in adults for Primary care physiciAnS: FLU COMPAS PCP – ADULTS. Family Medicine & Primary Care Review. 2020; 22(1): 81–96.
  9. Pająk A, Jankowski P, Zdrojewski T. The burden of cardiovascular disease risk factors: A current problem. Kardiol Pol. 2022; 80(1): 5–15.
  10. Violi F, Pignatelli P, Cammisotto V, et al. COVID-19 and thrombosis: Clinical features, mechanism of disease, and therapeutic implications. Kardiol Pol. 2021; 79(11): 1197–1205.
  11. Tadic M, Cuspidi C. In-hospital outcomes in COVID-19 patients: Did we learn something? Kardiol Pol. 2021; 79(7-8): 730–732.
  12. Jankowska-Sanetra J, Sanetra K, Konopko M, et al. Incidence and course of acute coronary syndrome cases after the first wave of the COVID-19 pandemic. Kardiol Pol. 2023; 81(1): 22–30.
  13. Zhu X, Ge Y, Wu T, et al. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020; 285: 198005.
  14. Said MA, Johnson HL, Nonyane BAS, et al. Estimating the burden of pneumococcal pneumonia among adults: a systematic review and meta-analysis of diagnostic techniques. PLoS One. 2013; 8(4): e60273.
  15. Jansen AG, Rodenburg GD, van der Ende A, et al. Invasive pneumococcal disease among adults: associations among serotypes, disease characteristics, and outcome. Clin Infect Dis. 2009; 49(2): e23–e29.
  16. Centers for Disease Control and Prevention. Active Bacterial Core surveillance (ABCs) report. Emerging Infections Program Network: Streptococcus pneumoniae, 2012. www.cdc.gov/abcs/reports-findings/survreports/spneu12.pdf (Grudzień 2022).
  17. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep. 2010; 59(34): 1102–1106.
  18. Musher DM. Streptococcus pneumoniae. In: Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 7th ed. 2010: 2623–2642.
  19. van Hoek AJ, Andrews N, Waight PA, et al. The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J Infect. 2012; 65(1): 17–24.
  20. Klemets P, Lyytikäinen O, Ruutu P, et al. Invasive pneumococcal infections among persons with and without underlying medical conditions: implications for prevention strategies. BMC Infect Dis. 2008; 8: 96.
  21. Centers for Disease Control and Prevention. Prevention of pneumococcal infections secondary to seasonal and 2009 H1N1 influenza viruses infection. www.cdc.gov/h1n1flu/vaccination/provider/provider_pneumococcal.htm (Grudzień 2022).
  22. Skoczyńska A, Gołębiewska A, Wróbel-Pawelczyk I, et al. Invasive pneumococcal disease in Poland in 2021 [in Polish]. KOROUN 2022.
  23. Ramirez JA, Wiemken TL, Peyrani P, et al. Adults hospitalized with pneumonia in the United States: incidence, epidemiology, and mortality. Clin Infect Dis. 2017; 65(11): 1806–1812.
  24. Curcio D, Cané A, Isturiz R. Redefining risk categories for pneumococcal disease in adults: critical analysis of the evidence. Int J Infect Dis. 2015; 37: 30–35.
  25. Shea KM, Edelsberg J, Weycker D, et al. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis. 2014; 1(1): ofu024.
  26. The report "Pneumococcal pneumonia in adults: The situation in Poland. Epidemiology, consequences, prevention" [in Polish] prepared in June 2021 by HealthQuest Ltd. https://pneumokokinieliczalat.pl (Grudzień 2022).
  27. Corrales-Medina VF, Alvarez KN, Weissfeld LA, et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA. 2015; 313(3): 264–274.
  28. Bergh C, Fall K, Udumyan R, et al. Severe infections and subsequent delayed cardiovascular disease. Eur J Prev Cardiol. 2017; 24(18): 1958–1966.
  29. Eurich DT, Lee C, Marrie TJ, et al. Inhaled corticosteroids and risk of recurrent pneumonia: a population-based, nested case-control study. Clin Infect Dis. 2013; 57(8): 1138–1144.
  30. Africano HF, Serrano-Mayorga CC, Ramirez-Valbuena PC, et al. Major adverse cardiovascular events during invasive pneumococcal disease are serotype dependent. Clin Infect Dis. 2021; 72(11): e711–e719.
  31. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Kardiol Pol. 2015; 73(12): 1127–1206.
  32. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022; 43(38): 3618–3731.
  33. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016; 37(29): 2315–2381.
  34. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol. 2022; 29(1): 5–115.
  35. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599–3726.
  36. Marra F, Zhang A, Gillman E, et al. The protective effect of pneumococcal vaccination on cardiovascular disease in adults: A systematic review and meta-analysis. Int J Infect Dis. 2020; 99: 204–213.
  37. Ren S, Newby D, Li SC, et al. Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart. 2015; 2(1): e000247.
  38. Vlachopoulos CV, Terentes-Printzios DG, Aznaouridis KA, et al. Association between pneumococcal vaccination and cardiovascular outcomes: a systematic review and meta-analysis of cohort studies. Eur J Prev Cardiol. 2015; 22(9): 1185–1199.
  39. Chang YC, Chou YJ, Liu JY, et al. Additive benefits of pneumococcal and influenza vaccines among elderly persons aged 75 years or older in Taiwan--a representative population-based comparative study. J Infect. 2012; 65(3): 231–238.
  40. Zahid M, Singla I, Good CB, et al. Associations between pneumococcal vaccinationand adverse outcomes in patients with suspected acute coronary syndrome. Advances in Infectious Diseases. 2012; 02(04): 122–134.
  41. Eurich DT, Johnstone JJ, Minhas-Sandhu JK, et al. Pneumococcal vaccination and risk of acute coronary syndromes in patients with pneumonia: population-based cohort study. Heart. 2012; 98(14): 1072–1077.
  42. Jaiswal V, Ang SP, Lnu K, et al. Effect of pneumococcal vaccine on mortality and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Med. 2022; 11(13).
  43. Ren S, Hure A, Peel R, et al. AUSPICE study group. Rationale and design of a randomized controlled trial of pneumococcal polysaccharide vaccine for prevention of cardiovascular events: The Australian Study for the Prevention through Immunization of Cardiovascular Events (AUSPICE). Am Heart J. 2016; 177: 58–65.
  44. Ren S, Hansbro PM, Srikusalanukul W, et al. Generation of cardio-protective antibodies after pneumococcal polysaccharide vaccine: Early results from a randomised controlled trial. Atherosclerosis. 2022; 346: 68–74.
  45. Nilsson J, Hansson GK. Vaccination strategies and immune modulation of atherosclerosis. Circ Res. 2020; 126(9): 1281–1296.
  46. Clutterbuck EA, Lazarus R, Yu LM, et al. Pneumococcal conjugate and plain polysaccharide vaccines have divergent effects on antigen-specific B cells. J Infect Dis. 2012; 205(9): 1408–1416.
  47. Pletz MW, Maus U, Krug N, et al. Pneumococcal vaccines: mechanism of action, impact on epidemiology and adaption of the species. Int J Antimicrob Agents. 2008; 32(3): 199–206.
  48. Announcement of the Chief Sanitary Inspector dated October 28, 2021 on the 2022 Immunization Program [in Polish].
  49. Jackson LA, Gurtman A, van Cleeff M, et al. Influence of initial vaccination with 13-valent pneumococcal conjugate vaccine or 23-valent pneumococcal polysaccharide vaccine on anti-pneumococcal responses following subsequent pneumococcal vaccination in adults 50 years and older. Vaccine. 2013; 31(35): 3594–3602.
  50. van Werkhoven CH, Huijts SM, Bolkenbaas M, et al. The impact of age on the efficacy of 13-valent pneumococcal conjugate vaccine in elderly. Clin Infect Dis. 2015; 61(12): 1835–1838.
  51. McLaughlin JM, Jiang Q, Isturiz RE, et al. Effectiveness of 13-valent pneumococcal conjugate vaccine against hospitalization for community-acquired pneumonia in older US adults: a test-negative design. Clin Infect Dis. 2018; 67(10): 1498–1506.
  52. Niederman MS, Folaranmi T, Buchwald UK, et al. Efficacy and effectiveness of a 23-valent polysaccharide vaccine against invasive and noninvasive pneumococcal disease and related outcomes: a review of available evidence. Expert Rev Vaccines. 2021; 20(3): 243–256.
  53. Bonten MJM, Huijts SM, Bolkenbaas M, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med. 2015; 372(12): 1114–1125.
  54. Characteristics of the Medicinal Product Pneumovax 23 [in Polish]. Date of last update July 9, 2019.
  55. Apexxnar Product Characteristics [in Polish].
  56. Product Characteristics of Prevenar 13 [in Polish]. Date of last update: November 25, 2020.
  57. European Centre for Disease Prevention and Control (ECDC). Monitor Atlas of Infectious Diseases, Invasive Pneumococcal Disease, 2018. https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2018_IPD.pdf (18.04.2021).
  58. Balsells E, Guillot L, Nair H, et al. Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era: A systematic review and meta-analysis. PLoS One. 2017; 12(5): e0177113.
  59. Hausdorff WP, Hanage WP. Interim results of an ecological experiment - Conjugate vaccination against the pneumococcus and serotype replacement. Hum Vaccin Immunother. 2016; 12(2): 358–374.
  60. Moore MR, Link-Gelles R, Schaffner W, et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis. 2015; 15(3): 301–309.
  61. Metcalf BJ, Gertz RE, Gladstone RA, et al. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect. 2016; 22(1): 60.e9–60.e29.
  62. Tomczyk S, Lynfield R, Schaffner W, et al. Prevention of antibiotic-nonsusceptible invasive pneumococcal disease with the 13-valent pneumococcal conjugate vaccine. Clin Infect Dis. 2016; 62(9): 1119–1125.
  63. Mendes RE, Hollingsworth RC, Costello A, et al. Noninvasive Streptococcus pneumoniae serotypes recovered from hospitalized adult patients in the United States in 2009 to 2012. Antimicrob Agents Chemother. 2015; 59(9): 5595–5601.
  64. Oligbu G, Collins S, Sheppard CL, et al. Childhood deaths attributable to invasive pneumococcal disease in England and wales, 2006-2014. Clin Infect Dis. 2017; 65(2): 308–314.
  65. van Hoek AJ, Andrews N, Waight PA, et al. Effect of serotype on focus and mortality of invasive pneumococcal disease: coverage of different vaccines and insight into non-vaccine serotypes. PLoS One. 2012; 7(7): e39150.
  66. Stanek RJ, Norton NB, Mufson MA. A 32-year study of the effect of pneumococcal vaccines on invasive streptococcus pneumoniae disease. Am J Med Sci. 2016; 352(6): 563–573.
  67. Harboe ZB, Thomsen RW, Riis A, et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med. 2009; 6(5): e1000081.
  68. Kuchar E, Antczak A, Skoczyńska A, et al. Pneumococcal vaccination among adults – updated Polish recommendations. Family Medicine & Primary Care Review. 2022; 24(3): 285–291.
  69. Kobayashi M, Farrar JL, Gierke R, et al. Use of 15-Valent Pneumococcal Conjugate Vaccine and 20-Valent Pneumococcal Conjugate Vaccine Among U.S. Adults: Updated Recommendations of the Advisory Committee on Immunization Practices - United States, 2022. MMWR Morb Mortal Wkly Rep. 2022; 71(4): 109–117.