Vol 81, Supp. I (2023): Zeszyty Edukacyjne 1/2023
Opinie i stanowiska ekspertów
Published online: 2023-09-27

open access

Page views 377
Article views/downloads 345
Get Citation

Connect on Social Media

Connect on Social Media

Rola terapii przezcewnikowych w leczeniu ostrej zatorowości płucnej — opinia Polskiej Inicjatywy PERT, Sekcji Krążenia Płucnego, Asocjacji Interwencji Sercowo-Naczyniowych i Asocjacji Intensywnej Terapii Kardiologicznej Polskiego Towarzystwa Kardiologicznego

Grzegorz Kopeć12, Aleksander Araszkiewicz3, Marcin Kurzyna4, Sylwia Sławek-Szmyt3, Jakub Stępniewski125, Marek Roik6, Szymon Darocha4, Marek Gołębiowski7, Miłosz Jaguszewski8, Stanisław Jankiewicz3, Marta Kałużna-Oleksy3, Wiktor Kuliczkowski9, Ewa Lewicka10, Tatiana Mularek-Kubzdela3, Arkadiusz Pietrasik11, Marcin Protasiewicz9, Roman Przybylski12, Paweł Pleskot7, Agnieszka Tycińska13, Dariusz Zieliński14, Piotr Podolec215, Przemysław Trzeciak16, Marek Grygier3, Ewa Mroczek17, Piotr Pruszczyk6
DOI: 10.33963/v.kp.96986

Abstract

Dzięki postępom w zakresie technologii kardiologii interwencyjnej leczenie przezcewnikowe stało się w ostatnich latach realną opcją terapeutyczną w leczeniu pacjentów z ostrą zatorowością płucną z wysokim ryzykiem wczesnej śmiertelności. Obecnie stosowane techniki przezcewnikowe umożliwiają miejscową fibrynolizę lub embolektomię przy minimalnym ryzyku powikłań. Stąd mogą być rozważane u pacjentów z grupy wysokiego ryzyka jako alternatywa dla chirurgicznej embolektomii płucnej, gdy systemowa tromboliza jest przeciwwskazana lub nieskuteczna. Rozważane są również u pacjentów z grupy średniego–wysokiego ryzyka, u których pomimo leczenia przeciwzakrzepowego nie uzyskano poprawy lub nastąpiło pogorszenie stanu klinicznego.
Celem artykułu było przedstawienie roli technik przezcewnikowych w leczeniu chorych z ostrą zatorowością płucną zgodnie z aktualną wiedzą i opinią ekspertów. Leczenie interwencyjne opisano w szerszym kontekście organizacji opieki nad pacjentem. Przedstawiono organizację i zadania zespołu szybkiego reagowania w zatorowości płucnej, rolę obrazowania przedzabiegowego, zasady antykoagulacji okołozabiegowej, kryteria kwalifikacji pacjentów, wyboru odpowiedniego czasu interwencji oraz rolę intensywnej terapii. Szczegółowo omówiono dostępne terapie przezcewnikowe, w tym wystandaryzowane protokoły, definicje sukcesu i niepowodzenia procedury. Niniejszy dokument został opracowany we współpracy z ekspertami z różnych polskich towarzystw naukowych, co podkreśla rolę pracy zespołowej w opiece nad chorym z ostrą zatorowością płucną.

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Araszkiewicz A, Kurzyna M, Kopeć G, et al. Expert opinion on the creating and operating of the regional Pulmonary Embolism Response Teams (PERT). Polish PERT Initiative. Cardiol J. 2019; 26(6): 623–632.
  2. Pruszczyk P, Klok FA, Kucher N, et al. Percutaneous treatment options for acute pulmonary embolism: a clinical consensus statement by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function and the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention. 2022; 18(8): e623–e638.
  3. Meyer G, Vicaut E, Danays T, et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med. 2014; 370(15): 1402–1411.
  4. Meneveau N, Séronde MF, Blonde MC, et al. Management of unsuccessful thrombolysis in acute massive pulmonary embolism. Chest. 2006; 129(4): 1043–1050.
  5. Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020; 41(4): 543–603.
  6. Eubank BH, Mohtadi NG, Lafave MR, et al. Using the modified Delphi method to establish clinical consensus for the diagnosis and treatment of patients with rotator cuff pathology. BMC Med Res Methodol. 2016; 16: 56.
  7. Kabrhel C, Jaff MR, Channick RN, et al. A multidisciplinary pulmonary embolism response team. Chest. 2013; 144(5): 1738–1739.
  8. Heresi GA, Porres-Aguilar M. Pulmonary embolism response teams: a concept in progress and beyond borders. Kardiol Pol. 2021; 79(12): 1301–1302.
  9. Schultz J, Giordano N, Zheng H, et al. EXPRESS: a multidisciplinary pulmonary embolism response team (PERT) — experience from a national multicenter consortium. Pulm Circ. 2019 [Epub ahead of print]; 9(3): 2045894018824563.
  10. Rosovsky R, Chang Y, Rosenfield K, et al. Changes in treatment and outcomes after creation of a pulmonary embolism response team (PERT), a 10-year analysis. J Thromb Thrombolysis. 2019; 47(1): 31–40.
  11. Chaudhury P, Gadre SK, Schneider E, et al. Impact of multidisciplinary pulmonary embolism response team availability on management and outcomes. Am J Cardiol. 2019; 124(9): 1465–1469.
  12. Myc LA, Solanki JN, Barros AJ, et al. Adoption of a dedicated multidisciplinary team is associated with improved survival in acute pulmonary embolism. Respir Res. 2020; 21(1): 159.
  13. Araszkiewicz A, Kurzyna M, Kopeć G, et al. Pulmonary embolism response team: A multidisciplinary approach to pulmonary embolism treatment. Polish PERT Initiative Report. Kardiol Pol. 2021; 79(12): 1311–1319.
  14. Roik M, Wretowski D, Łabyk A, et al. Initial experience of pulmonary embolism response team with percutaneous embolectomy in intermediate-high- and high-risk acute pulmonary embolism. Kardiol Pol. 2019; 77(2): 228–231.
  15. Sławek-Szmyt S, Jankiewicz S, Smukowska-Gorynia A, et al. Implementation of a regional multidisciplinary pulmonary embolism response team: PERT-POZ initial 1-year experience. Kardiol Pol. 2020; 78(4): 300–310.
  16. Pietrasik A, Gąsecka A, Kurzyna P, et al. Characteristics and outcomes of patients consulted by a multidisciplinary pulmonary embolism response team: 5-year experience. J Clin Med. 2022; 11(13).
  17. Provias T, Dudzinski DM, Jaff MR, et al. The massachusetts general hospital pulmonary embolism response team (MGH PERT): creation of a multidisciplinary program to improve care of patients with massive and submassive pulmonary embolism. Hosp Pract (1995). 2014; 42(1): 31–37.
  18. Kabrhel C, Rosovsky R, Channick R, et al. A multidisciplinary pulmonary embolism response team: initial 30-month experience with a novel approach to delivery of care to patients with submassive and massive pulmonary embolism. Chest. 2016; 150(2): 384–393.
  19. Ciurzyński M, Kurzyna M, Kopeć G, et al. An expert opinion of the Polish Cardiac Society Working Group on Pulmonary Circulation on screening for chronic thromboembolic pulmonary hypertension patients after acute pulmonary embolism: Update. Kardiol Pol. 2022; 80(6): 723–732.
  20. Darocha S, Roik M, Kopeć G, et al. Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension: a multicentre registry. EuroIntervention. 2022; 17(13): 1104–1111.
  21. Kopeć G, Dzikowska-Diduch O, Mroczek E, et al. Characteristics and outcomes of patients with chronic thromboembolic pulmonary hypertension in the era of modern therapeutic approaches: data from the Polish multicenter registry (BNP-PL). Ther Adv Chronic Dis. 2021; 12: 20406223211002961.
  22. Kopeć G, Kurzyna M, Mroczek E, et al. Database of Pulmonary Hypertension in the Polish Population (BNP‑PL): design of the registry. Kardiol Pol. 2019; 77(10): 972–974.
  23. Pruszczyk P, Goliszek S, Lichodziejewska B, et al. Prognostic value of echocardiography in normotensive patients with acute pulmonary embolism. JACC Cardiovasc Imaging. 2014; 7(6): 553–560.
  24. Pruszczyk P, Kurnicka K, Ciurzyński M, et al. Defining right ventricular dysfunction by echocardiography in normotensive patients with pulmonary embolism. Pol Arch Intern Med. 2020; 130(9): 741–747.
  25. Wiliński J, Skwarek A, Borek R, et al. Subcostal echocardiographic assessment of tricuspid annular kick (SEATAK): A novel independent predictor of 30-day mortality in patients with acute pulmonary embolism. Kardiol Pol. 2022; 80(11): 1127–1135.
  26. Wiliński J, Skwarek A, Borek R, et al. Right ventricular wall thickness indexed to body surface area as an echocardiographic predictor of acute pulmonary embolism in high-risk patients. Kardiol Pol. 2022; 80(2): 205–207.
  27. Pruszczyk P, Skowrońska M, Ciurzyński M, et al. Assessment of pulmonary embolism severity and the risk of early death. Pol Arch Intern Med. 2021; 131(12).
  28. Gerry S, Bonnici T, Birks J, et al. Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology. BMJ. 2020; 369: m1501.
  29. Kosiorek A, Kosowski M, Reczuch K, et al. Recurrent pulmonary embolism in a patient after COVID-19 treated with percutaneous and surgical approach. Kardiol Pol. 2021; 79(9): 1042–1043.
  30. Pietrasik A, Gasecka A, Kotulecki A, et al. Catheter-directed therapy to treat intermediateand high-risk pulmonary embolism: Personal experience and review of the literature. Cardiol J. 2023; 30(3): 462–472.
  31. Pasha AK, Siddiqui MU, Siddiqui MD, et al. Catheter directed compared to systemically delivered thrombolysis for pulmonary embolism: a systematic review and meta-analysis. J Thromb Thrombolysis. 2022; 53(2): 454–466.
  32. Stępniewski J, Magoń W, Jonas K, et al. Catheter-directed thrombolysis for the treatment of acute pulmonary embolism refractory to systemic fibrinolysis. Pol Arch Intern Med. 2021; 131(6): 568–570.
  33. Kucher N, Boekstegers P, Müller OJ, et al. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation. 2014; 129(4): 479–486.
  34. Piazza G, Hohlfelder B, Jaff MR, et al. SEATTLE II Investigators. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II study. JACC Cardiovasc Interv. 2015; 8(10): 1382–1392.
  35. Tapson VF, Sterling K, Jones N, et al. A randomized trial of the optimum duration of acoustic pulse thrombolysis procedure in acute intermediate-risk pulmonary embolism: the OPTALYSE PE trial. JACC Cardiovasc Interv. 2018; 11(14): 1401–1410.
  36. Stępniewski J, Kopeć G, Musiałek P, et al. Hemodynamic effects of ultrasound-assisted, catheter-directed, very low-dose, short-time duration thrombolysis in acute intermediate-high risk pulmonary embolism (from the EKOS-PL study). Am J Cardiol. 2021; 141: 133–139.
  37. Stępniewski J, Kopeć G, Magoń W, et al. Ultrasound‑assisted, catheter‑directed, low‑dose thrombolysis for the treatment of acute intermediate‑high risk pulmonary embolism. Pol Arch Intern Med. 2018; 128(6): 394–395.
  38. Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J. 2019; 54(3): 1901647.
  39. Azarian R, Wartski M, Collignon MA, et al. Lung perfusion scans and hemodynamics in acute and chronic pulmonary embolism. J Nucl Med. 1997; 38(6): 980–983.
  40. Schultz J, Andersen A, Kabrhel C, et al. Catheter-based therapies in acute pulmonary embolism. EuroIntervention. 2018; 13(14): 1721–1727.
  41. Sławek-Szmyt SL, Jankiewicz S, Grygier M, et al. A novel hybrid catheter-directed technique to treat intermediate-high risk pulmonary embolism. Cardiol J. 2022; 29(2): 342–345.
  42. Schmitz-Rode T, Janssens U, Duda SH, et al. Massive pulmonary embolism: percutaneous emergency treatment by pigtail rotation catheter. J Am Coll Cardiol. 2000; 36(2): 375–380.
  43. Barjaktarevic I, Friedman O, Ishak C, et al. Catheter-directed clot fragmentation using the Cleaner™ device in a patient presenting with massive pulmonary embolism. J Radiol Case Rep. 2014; 8(2): 30–36.
  44. Kurzyna M, Pietrasik A, Opolski G, et al. Contemporary methods for the treatment of pulmonary embolism - is it prime-time for percutaneous interventions? Kardiol Pol. 2017; 75(11): 1161–1170.
  45. Pietrasik A, Gąsecka A, Smyk JM, et al. Acute-on-chronic pulmonary embolism and concomitant paradoxical embolism: two diseases, one intervention. Pol Arch Intern Med. 2022; 132(1).
  46. Bayiz H, Dumantepe M, Teymen B, et al. Percutaneous aspiration thrombectomy in treatment of massive pulmonary embolism. Heart Lung Circ. 2015; 24(1): 46–54.
  47. Latacz P, Simka M, Brzegowy P, et al. Treatment of high- and intermediate-risk pulmonary embolism using the AngioJet percutaneous mechanical thrombectomy system in patients with contraindications for thrombolytic treatment — a pilot study. Wideochir Inne Tech Maloinwazyjne. 2018; 13(2): 233–242.
  48. Bonvini RF, Righini M, Roffi M. Angiojet rheolytic thrombectomy in massive pulmonary embolism: locally efficacious but systemically deleterious? J Vasc Interv Radiol. 2010; 21(11): 1774–1776; author reply 1776.
  49. Ciampi-Dopazo JJ, Romeu-Prieto JM, Sánchez-Casado M, et al. Aspiration thrombectomy for treatment of acute massive and submassive pulmonary embolism: initial single-center prospective experience. J Vasc Interv Radiol. 2018; 29(1): 101–106.
  50. Akbal ÖY, Keskin B, Tokgöz HC, et al. A seven-year single-center experience on AngioJet rheolytic thrombectomy in patients with pulmonary embolism at high risk and intermediate-high risk. Anatol J Cardiol. 2021; 25(12): 902–911.
  51. Pieraccini M, Guerrini S, Laiolo E, et al. Acute massive and submassive pulmonary embolism: preliminary validation of aspiration mechanical thrombectomy in patients with contraindications to thrombolysis. Cardiovasc Intervent Radiol. 2018; 41(12): 1840–1848.
  52. Araszkiewicz A, Sławek-Szmyt S, Jankiewicz S, et al. Continuous aspiration thrombectomy in high- and intermediate-high-risk pulmonary embolism in real-world clinical practice. J Interv Cardiol. 2020; 2020: 4191079.
  53. Sista AK, Horowitz JM, Tapson VF, et al. Indigo aspiration system for treatment of pulmonary embolism: results of the extract-pe trial. JACC Cardiovasc Interv. 2021; 14(3): 319–329.
  54. Stępniewski J, Magoń W, Podolec P, et al. The PENUMBRA Lightning 12 system for treatment of acute intermediate-high pulmonary embolism. Initial experience in Pulmonary Circulation Center Krakow, Poland. Postepy Kardiol Interwencyjnej. 2022; 18(3): 314–316.
  55. Tu T, Toma C, Tapson VF, et al. FLARE Investigators. A prospective, single-arm, multicenter trial of catheter-directed mechanical thrombectomy for intermediate-risk acute pulmonary embolism: the FLARE study. JACC Cardiovasc Interv. 2019; 12(9): 859–869.
  56. Puślecki M, Stefaniak S, Katarzyński S, et al. AngioVac: The first in poland percutaneous solid thrombus aspiration from the right atrium. Kardiol Pol. 2022; 80(1): 103–104.
  57. Bikdeli B, Chatterjee S, Desai NR, et al. Inferior vena cava filters to prevent pulmonary embolism: systematic review and meta-analysis. J Am Coll Cardiol. 2017; 70(13): 1587–1597.
  58. Jia Z, Wu A, Tam M, et al. Caval penetration by inferior vena cava filters: a systematic literature review of clinical significance and management. Circulation. 2015; 132(10): 944–952.
  59. Zieliński D, Zygier M, Dyk W, et al. Acute pulmonary embolism with coexisting right heart thrombi in transit-surgical treatment of 20 consecutive patients. Eur J Cardiothorac Surg. 2023; 63(4).
  60. Seo WW, Kim SE, Park MS, et al. Systematic review of treatment for trapped thrombus in patent foramen ovale. Korean Circ J. 2017; 47(5): 776–785.
  61. Ius F, Hoeper MM, Fegbeutel C, et al. Extracorporeal membrane oxygenation and surgical embolectomy for high-risk pulmonary embolism. Eur Respir J. 2019; 53(4).
  62. Pietrasik A, Gąsecka A, Leśniewski M, et al. Hybrid treatment of massive pulmonary embolism by catheter-directed and surgical embolectomy. Postepy Kardiol Interwencyjnej. 2021; 17(2): 236–238.
  63. Kon ZN, Pasrija C, Bittle GJ, et al. The incidence and outcomes of surgical pulmonary embolectomy in north america. Ann Thorac Surg. 2019; 107(5): 1401–1408.
  64. Pasrija C, Kronfli A, Rouse M, et al. Outcomes after surgical pulmonary embolectomy for acute submassive and massive pulmonary embolism: A single-center experience. J Thorac Cardiovasc Surg. 2018; 155(3): 1095–1106.e2.
  65. Neely RC, Byrne JG, Gosev I, et al. Surgical embolectomy for acute massive and submassive pulmonary embolism in a series of 115 patients. Ann Thorac Surg. 2015; 100(4): 1245–1251; discussion 1251.
  66. Hayes SN, Tweet MS, Adlam D, et al. Spontaneous coronary artery dissection: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 76(8): 961–984.
  67. Hartman AR, Manetta F, Lessen R, et al. Acute surgical pulmonary embolectomy: a 9-year retrospective analysis. Tex Heart Inst J. 2015; 42(1): 25–29.
  68. Green EM, Givertz MM. Management of acute right ventricular failure in the intensive care unit. Curr Heart Fail Rep. 2012; 9(3): 228–235.
  69. Tycińska A, Grygier M, Biegus J, et al. Mechanical circulatory support. An expert opinion of the Association of Intensive Cardiac Care and the Association of Cardiovascular Interventions of the Polish Cardiac Society. Kardiol Pol. 2021; 79(12): 1399–1410.
  70. McDonagh TA, Metra M, Adamo M, et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599–3726.
  71. Lahm T, McCaslin CA, Wozniak TC, et al. Medical and surgical treatment of acute right ventricular failure. J Am Coll Cardiol. 2010; 56(18): 1435–1446.
  72. Zamanian RT, Haddad F, Doyle RL, et al. Management strategies for patients with pulmonary hypertension in the intensive care unit. Crit Care Med. 2007; 35(9): 2037–2050.
  73. Kmiec L, Philipp A, Floerchinger B, et al. Extracorporeal membrane oxygenation for massive pulmonary embolism as bridge to therapy. ASAIO J. 2020; 66(2): 146–152.
  74. Karami M, Mandigers L, Miranda DD, et al. Survival of patients with acute pulmonary embolism treated with venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. J Crit Care. 2021; 64: 245–254.
  75. Kaso ER, Pan JA, Salerno M, et al. Venoarterial extracorporeal membrane oxygenation for acute massive pulmonary embolism: a meta-analysis and call to action. J Cardiovasc Transl Res. 2022; 15(2): 258–267.
  76. Elbadawi A, Mentias A, Elgendy IY, et al. National trends and outcomes for extra-corporeal membrane oxygenation use in high-risk pulmonary embolism. Vasc Med. 2019; 24(3): 230–233.
  77. Goldberg JB, Giri J, Kobayashi T, et al. Surgical management and mechanical circulatory support in high-risk pulmonary embolisms: historical context, current status, and future directions: a scientific statement from the american heart association. Circulation. 2023; 147(9): e628–e647.
  78. Giri J, Sista AK, Weinberg I, et al. Interventional therapies for acute pulmonary embolism: current status and principles for the development of novel evidence: a scientific statement from the american heart association. Circulation. 2019; 140(20): e774–e801.
  79. Weinberg A, Tapson VF, Ramzy D. Massive pulmonary embolism: extracorporeal membrane oxygenation and surgical pulmonary embolectomy. Semin Respir Crit Care Med. 2017; 38(1): 66–72.
  80. Liu Z, Chen J, Xu X, et al. Extracorporeal membrane oxygenation-first strategy for acute life-threatening pulmonary embolism. Front Cardiovasc Med. 2022; 9: 875021.
  81. Mostafa A, Briasoulis A, Telila T, et al. Treatment of massive or submassive acute pulmonary embolism with catheter-directed thrombolysis. Am J Cardiol. 2016; 117(6): 1014–1020.
  82. VanDyck TJ, Pinsky MR. Hemodynamic monitoring in cardiogenic shock. Curr Opin Crit Care. 2021; 27(4): 454–459.
  83. Ventetuolo CE, Klinger JR. Management of acute right ventricular failure in the intensive care unit. Ann Am Thorac Soc. 2014; 11(5): 811–822.
  84. Erol S, Gürün Kaya A, Arslan Ciftçi F, et al. Is oxygen saturation variable of simplified pulmonary embolism severity index reliable for identification of patients, suitable for outpatient treatment. Clin Respir J. 2018; 12(2): 762–766.
  85. Messika J, Goutorbe P, Hajage D, et al. Severe pulmonary embolism managed with high-flow nasal cannula oxygen therapy. Eur J Emerg Med. 2017; 24(3): 230–232.
  86. Song HZ, Gu JX, Xiu HQ, et al. The value of high-flow nasal cannula oxygen therapy after extubation in patients with acute respiratory failure. Clinics (Sao Paulo). 2017; 72(9): 562–567.
  87. Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 2003; 29(9): 1426–1434.
  88. Vassilakopoulos T, Zakynthinos S, Roussos Ch. Respiratory muscles and weaning failure. Eur Respir J. 1996; 9(11): 2383–2400.
  89. Zochios V, Keeshan A. Pulmonary embolism in the mechanically-ventilated critically ill patient: is it different? J Intensive Care Soc. 2013; 14(1): 36–44.
  90. Torbicki A, Perrier A, Konstantinides S, et al. Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J. 2008; 29(18): 2276–2315.
  91. Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med. 2016; 44(2): 282–290.
  92. Sedhom R, Elbadawi A, Megaly M, et al. Hospital procedural volume and outcomes with catheter-directed intervention for pulmonary embolism: a nationwide analysis. Eur Heart J Acute Cardiovasc Care. 2022; 11(9): 684–692.
  93. Jung RG, Simard T, Hibbert B, et al. Association of annual volume and in-hospital outcomes of catheter-directed thrombolysis for pulmonary embolism. Catheter Cardiovasc Interv. 2022; 99(2): 440–446.