Przezcewnikowa implantacja zastawki aortalnej w leczeniu dysfunkcyjnych bioprotez chirurgicznych i przezcewnikowych. Opinia ekspertów Asocjacji Interwencji Sercowo-Naczyniowych Polskiego Towarzystwa Kardiologicznego
Abstract
Ponad 15-letnie doświadczenie i wyniki dużych badań obserwacyjnych, na podstawie których tworzone są wytyczne, wskazują na bezpieczeństwo i skuteczność zabiegów przezcewnikowej implantacji „zastawki w zastawkę” (ViV-TAVI, valve-in-valve transcatheter aortic valve implantation), zmniejszając tym samym potrzebę reoperacji u pacjentów wysokiego ryzyka. Oczekuje się, że liczba zabiegów ViV-TAVI w Polsce, szacowana na około 2% wszystkich przezcewnikowej implantacji zastawki aortalnej w 2020 roku, będzie rosła. Niniejszy dokument ma na celu przegląd aspektów proceduralnych ViV-TAVI, w tym odpowiednich metod planowania przedzabiegowego, sposobów optymalizacji wyników hemodynamicznych i ograniczania ryzyka okluzji tętnic wieńcowych. Dokument zawiera również wstępny przegląd wskazań i wytycznych dotyczących ponownego zabiegu TAVI (re-do TAVI) u pacjentów ze zdegenerowanymi zastawkami przezcewnikowymi.
Keywords: bioproteza aortalnadegeneracjaokluzja wieńcowa„zastawka w zastawkę”
References
- Vahanian A, Beyersdorf F, Praz F, et al. ESC/EACTS Scientific Document Group. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022; 43(7): 561–632.
- Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the american college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation. 2021; 143(5): e72–e7e227.
- Bartus K, Sadowski J, Litwinowicz R, et al. Changing trends in aortic valve procedures over the past ten years-from mechanical prosthesis via stented bioprosthesis to TAVI procedures-analysis of 50,846 aortic valve cases based on a Polish National Cardiac Surgery Database. J Thorac Dis. 2019; 11(6): 2340–2349.
- Wenaweser P, Buellesfeld L, Gerckens U, et al. Percutaneous aortic valve replacement for severe aortic regurgitation in degenerated bioprosthesis: the first valve in valve procedure using the Corevalve Revalving system. Catheter Cardiovasc Interv. 2007; 70(5): 760–764.
- Dvir D, Webb J, Brecker S, et al. Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry. Circulation. 2012; 126(19): 2335–2344.
- Tam DY, Vo TX, Wijeysundera HC, et al. Transcatheter valve-in-valve versus redo surgical aortic valve replacement for the treatment of degenerated bioprosthetic aortic valve: a systematic review and meta-analysis. Catheter Cardiovasc Interv. 2018; 92(7): 1404–1411.
- Hirji SA, Percy ED, Zogg CK, et al. Comparison of in-hospital outcomes and readmissions for valve-in-valve transcatheter aortic valve replacement vs. reoperative surgical aortic valve replacement: a contemporary assessment of real-world outcomes. Eur Heart J. 2020; 41(29): 2747–2755.
- Carroll JD, Mack MJ, Vemulapalli S, et al. STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2020; 76(21): 2492–2516.
- Scisło P, Grodecki K, Bińczak D, et al. Valve-in-valve treatment of dysfunctional aortic bioprostheses - single-centre experience. Postepy Kardiol Interwencyjnej. 2018; 14(4): 425–428.
- Huczek Z, Jędrzejczyk S, Jagielak D, et al. Transcatheter aortic valve‑in‑valve implantation for failed surgical bioprostheses: results from the Polish Transcatheter Aortic Valve-in-Valve Implantation (ViV‑TAVI) Registry. Pol Arch Intern Med. 2022; 132(2).
- Christ T, Grubitzsch H, Claus B, et al. Hemodynamic behavior of stentless aortic valves in long term follow-up. J Cardiothorac Surg. 2014; 9: 197.
- Borger MA, Carson SM, Ivanov J, et al. Stentless aortic valves are hemodynamically superior to stented valves during mid-term follow-up: a large retrospective study. Ann Thorac Surg. 2005; 80(6): 2180–2185.
- Cheng D, Pepper J, Martin J, et al. Stentless versus stented bioprosthetic aortic valves: a systematic review and meta-analysis of controlled trials. Innovations (Phila). 2009; 4(2): 61–73.
- Bapat V, Mydin I, Chadalavada S, et al. A guide to fluoroscopic identification and design of bioprosthetic valves: a reference for valve-in-valve procedure. Catheter Cardiovasc Interv. 2013; 81(5): 853–861.
- Rubay JE, Raphael D, Sluysmans T, et al. Aortic valve replacement with allograft/autograft: subcoronary versus intraluminal cylinder or root. Ann Thorac Surg. 1995; 60(2 Suppl): S78–S82.
- Bach DS, Kon ND, Dumesnil JG, et al. Ten-year outcome after aortic valve replacement with the freestyle stentless bioprosthesis. Ann Thorac Surg. 2005; 80(2): 480–6; discussion 486.
- Hammermeister K, Sethi GK, Henderson WG, et al. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol. 2000; 36(4): 1152–1158.
- Rodriguez-Gabella T, Voisine P, Puri R, et al. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J Am Coll Cardiol. 2017; 70(8): 1013–1028.
- Fatima B, Mohananey D, Khan FW, et al. Durability data for bioprosthetic surgical aortic valve: a systematic review. JAMA Cardiol. 2019; 4(1): 71–80.
- Rodriguez-Gabella T, Voisine P, Dagenais F, et al. Long-term outcomes following surgical aortic bioprosthesis implantation. J Am Coll Cardiol. 2018; 71(13): 1401–1412.
- Søndergaard L, Ihlemann N, Capodanno D, et al. Durability of transcatheter and surgical bioprosthetic aortic valves in patients at lower surgical risk. J Am Coll Cardiol. 2019; 73(5): 546–553.
- Généreux P, Piazza N, Alu MC, et al. Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research. Eur Heart J. 2021; 42(19): 1825–1857.
- Capodanno D, Petronio AS, Prendergast B, et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2017; 38(45): 3382–3390.
- Dvir D, Webb JG, Bleiziffer S, et al. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA. 2014; 312(2): 162–170.
- Bapat V, Mydin I, Chadalavada S, et al. A guide to fluoroscopic identification and design of bioprosthetic valves: a reference for valve-in-valve procedure. Catheter Cardiovasc Interv. 2013; 81(5): 853–861.
- Bapat VN, Attia R, Thomas M. Effect of valve design on the stent internal diameter of a bioprosthetic valve: a concept of true internal diameter and its implications for the valve-in-valve procedure. JACC Cardiovasc Interv. 2014; 7(2): 115–127.
- Bapat V. Valve-in-valve apps: why and how they were developed and how to use them. EuroIntervention. 2014; 10 Suppl U: U44–U51.
- Herrmann HC, Daneshvar SA, Fonarow GC, et al. Prosthesis-Patient mismatch in Patients Undergoing transcatheter aortic valve replacement: from the STS/ACC TVT registry. J Am Coll Cardiol. 2018; 72(22): 2701–2711.
- Pibarot P, Simonato M, Barbanti M, et al. Impact of pre-existing prosthesis-patient mismatch on survival following aortic valve-in-valve procedures. JACC Cardiovasc Interv. 2018; 11(2): 133–141.
- Ribeiro HB, Webb JG, Makkar RR, et al. Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry. J Am Coll Cardiol. 2013; 62(17): 1552–1562.
- Ribeiro HB, Rodés-Cabau J, Blanke P, et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry. Eur Heart J. 2018; 39(8): 687–695.
- Jabbour RJ, Tanaka A, Finkelstein A, et al. Delayed coronary obstruction after transcatheter aortic valve replacement. J Am Coll Cardiol. 2018; 71(14): 1513–1524.
- Blanke P, Weir-McCall JR, Achenbach S, et al. Computed tomography imaging in the context of transcatheter aortic valve implantation (tavi)/transcatheter aortic valve replacement (TAVR): an expert consensus document of the Society of Cardiovascular Computed Tomography. JACC Cardiovasc Imaging. 2019; 12(1): 1–24.
- Tang GHL, Komatsu I, Tzemach L, et al. Risk of coronary obstruction and the need to perform BASILICA: the VIVID classification. EuroIntervention. 2020; 16(9): e757–e759.
- Blanke P, Soon J, Dvir D, et al. Computed tomography assessment for transcatheter aortic valve in valve implantation: The vancouver approach to predict anatomical risk for coronary obstruction and other considerations. J Cardiovasc Comput Tomogr. 2016; 10(6): 491–499.
- Bapat V, Mydin I, Chadalavada S, et al. A guide to fluoroscopic identification and design of bioprosthetic valves: a reference for valve-in-valve procedure. Catheter Cardiovasc Interv. 2013; 81(5): 853–861.
- Dvir D, Leipsic J, Blanke P, et al. Coronary obstruction in transcatheter aortic valve-in-valve implantation: preprocedural evaluation, device selection, protection, and treatment. Circ Cardiovasc Interv. 2015; 8(1).
- Zenses AS, Evin MA, Stanová V, et al. Effect of size and position of self-expanding transcatheter valve on haemodynamics following valve-in-valve procedure in small surgical bioprostheses: an in vitro study. EuroIntervention. 2018; 14(3): e282–e289.
- Grubitzsch H, Galloni M, Falk V. Wrinkles, folds and calcifications: Reduced durability after transcatheter aortic valve-in-valve replacement. J Thorac Cardiovasc Surg. 2017; 153(2): 266–268.
- Pibarot P, Simonato M, Barbanti M, et al. Impact of pre-existing prosthesis-patient mismatch on survival following aortic valve-in-valve procedures. JACC Cardiovasc Interv. 2018; 11(2): 133–141.
- Rodés-Cabau J, Abbas AE, Serra V, et al. Balloon- vs self-expanding valve systems for failed small surgical aortic valve bioprostheses. J Am Coll Cardiol. 2022; 80(7): 681–693.
- Abbas AE, Mando R, Kadri A, et al. Comparison of transvalvular aortic mean gradients obtained by intraprocedural echocardiography and invasive measurement in balloon and self-expanding transcatheter valves. J Am Heart Assoc. 2021; 10(19): e021014.
- Hatoum H, Hahn RT, Lilly S, et al. Differences in pressure recovery between balloon expandable and self-expandable transcatheter aortic valves. Ann Biomed Eng. 2020; 48(2): 860–867.
- Abbas AE, Mando R, Hanzel G, et al. Hemodynamic principles of prosthetic aortic valve evaluation in the transcatheter aortic valve replacement era. Echocardiography. 2020; 37(5): 738–757.
- Simonato M, Azadani AN, Webb J, et al. In vitro evaluation of implantation depth in valve-in-valve using different transcatheter heart valves. EuroIntervention. 2016; 12(7): 909–917.
- Simonato M, Webb J, Kornowski R, et al. Transcatheter replacement of failed bioprosthetic valves: large multicenter assessment of the effect of implantation depth on hemodynamics after aortic valve-in-valve. Circ Cardiovasc Interv. 2016; 9(6).
- Simonato M, Webb J, Bleiziffer S, et al. Current generation balloon-expandable transcatheter valve positioning strategies during aortic valve-in-valve procedures and clinical outcomes. JACC Cardiovasc Interv. 2019; 12(16): 1606–1617.
- Bieliauskas G, Wong I, Bajoras V, et al. Patient-specific implantation technique to obtain neo-commissural alignment with self-expanding transcatheter aortic valves. JACC Cardiovasc Interv. 2021; 14(19): 2097–2108.
- Hatoum H, Dollery J, Lilly SM, et al. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann Thorac Surg. 2018; 106(1): 70–78.
- Gunning PS, Vaughan TJ, McNamara LM. Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Ann Biomed Eng. 2014; 42(9): 1989–2001.
- Huczek Z, Grodecki K, Scisło P, et al. Transcatheter aortic valve-in-valve implantation in failed stentless bioprostheses. J Interv Cardiol. 2018; 31(6): 861–869.
- Duncan A, Moat N, Simonato M, et al. Outcomes following transcatheter aortic valve replacement for degenerative stentless versus stented bioprostheses. JACC Cardiovasc Interv. 2019; 12(13): 1256–1263.
- Poschner T, Werner P, Kocher A, et al. The JenaValve pericardial transcatheter aortic valve replacement system to treat aortic valve disease. Future Cardiol. 2022; 18(2): 101–113.
- Nielsen-Kudsk JE, Christiansen EH, Terkelsen CJ, et al. Fracturing the ring of small mitroflow bioprostheses by high-pressure balloon predilatation in transcatheter aortic valve-in-valve implantation. Circ Cardiovasc Interv. 2015; 8(8): e002667.
- Allen KB, Chhatriwalla AK, Saxon JT, et al. Bioprosthetic valve fracture: a practical guide. Ann Cardiothorac Surg. 2021; 10(5): 564–570.
- Allen KB, Chhatriwalla AK, Cohen DJ, et al. Bioprosthetic valve fracture to facilitate transcatheter valve-in-valve implantation. Ann Thorac Surg. 2017; 104(5): 1501–1508.
- Allen KB, Chhatriwalla AK, Saxon JT, et al. Bioprosthetic valve fracture: technical insights from a multicenter study. J Thorac Cardiovasc Surg. 2019; 158(5): 1317–1328.e1.
- Chhatriwalla AK, Allen KB, Saxon JT, et al. Bioprosthetic valve fracture improves the hemodynamic results of valve-in-valve transcatheter aortic valve replacement. Circ Cardiovasc Interv. 2017; 10(7).
- Saxon J, Allen K, Cohen D, et al. Complications of bioprosthetic valve fracture as an adjunct to valve-in-valve TAVR. Structural Heart. 2019; 3(2): 92–99.
- Shahanavaz S, Asnes JD, Grohmann J, et al. Intentional fracture of bioprosthetic valve frames in patients undergoing valve-in-valve transcatheter pulmonary valve replacement. Circ Cardiovasc Interv. 2018; 11(8): e006453.
- Patel JS, Krishnaswamy A, White J, et al. Optimizing hemodynamics of transcatheter aortic valve-in-valve implantation in 19-mm surgical aortic prostheses. Catheter Cardiovasc Interv. 2018; 92(3): 550–554.
- Richter I, Abdel-Wahab M, Desch S, et al. Cerebral embolic protection in patients undergoing transcatheter aortic valve implantation: Recent advances. Kardiol Pol. 2022; 80(6): 644–650.
- Banno H, Cochennec F, Marzelle J, et al. Comparison of fenestrated endovascular aneurysm repair and chimney graft techniques for pararenal aortic aneurysm. J Vasc Surg. 2014; 60(1): 31–39.
- Chakravarty T, Jilaihawi H, Nakamura M, et al. Pre-emptive positioning of a coronary stent in the left anterior descending artery for left main protection: a prerequisite for transcatheter aortic valve-in-valve implantation for failing stentless bioprostheses? Catheter Cardiovasc Interv. 2013; 82(4): E630–E636.
- Mercanti F, Rosseel L, Neylon A, et al. Chimney stenting for coronary occlusion during TAVR: insights from the chimney registry. JACC Cardiovasc Interv. 2020; 13(6): 751–761.
- Pighi M, Lunardi M, Pesarini G, et al. Intravascular ultrasound assessment of coronary ostia following valve-in-valve transcatheter aortic valve implantation. EuroIntervention. 2021; 16(14): 1148–1151.
- Khan JM, Dvir D, Greenbaum AB, et al. Transcatheter laceration of aortic leaflets to prevent coronary obstruction during transcatheter aortic valve replacement: concept to first-in-human. JACC Cardiovasc Interv. 2018; 11(7): 677–689.
- Komatsu I, Mackensen GB, Aldea GS, et al. Bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction. Part 2: how to perform BASILICA. EuroIntervention. 2019; 15(1): 55–66.
- Khan JM, Greenbaum AB, Babaliaros VC, et al. BASILICA trial: one-year outcomes of transcatheter electrosurgical leaflet laceration to prevent TAVR coronary obstruction. Circ Cardiovasc Interv. 2021; 14(5): e010238.
- Khan JM, Babaliaros VC, Greenbaum AB, et al. Preventing coronary obstruction during transcatheter aortic valve replacement: results from the multicenter international BASILICA registry. JACC Cardiovasc Interv. 2021; 14(9): 941–948.
- Mack MJ, Leon MB, Thourani VH, et al. PARTNER 3 Investigators. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019; 380(18): 1695–1705.
- Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019; 380(18): 1706–1715.
- Landes U, Webb JG, De Backer O, et al. Repeat transcatheter aortic valve replacement for transcatheter prosthesis dysfunction. J Am Coll Cardiol. 2020; 75(16): 1882–1893.
- Ando T, Adegbala O, Aggarwal A, et al. Redo aortic valve intervention after transcatheter aortic valve replacement: Analysis of the nationwide readmission database. Int J Cardiol. 2021; 325: 115–120.
- Perrin N, Asgar A. Redo-Transcatheter aortic valve replacement: strategies when the first transcatheter aortic valve replacement fails. US Cardiology Review. 2022; 16.
- Edelman JJ, Khan JM, Rogers T, et al. Valve-in-Valve TAVR: state-of-the-art review. Innovations (Phila). 2019; 14(4): 299–310.
- Eleid MF, Cabalka AK, Malouf JF, et al. Techniques and outcomes for the treatment of paravalvular leak. Circ Cardiovasc Interv. 2015; 8(8): e001945.
- Ben Ali W, et al. Transcatheter aortic valve replacement in small aortic annuli: Results from the FRANCE-TAVI registry.Presented at TCT 2022.
- Herrmann HC, Abdel-Wahab M, Attizzani GF, et al. Rationale and design of the SMall Annuli Randomized To Evolut or SAPIEN Trial (SMART Trial). Am Heart J. 2022; 243: 92–102.
- Ochiai T, Oakley L, Sekhon N, et al. Risk of coronary obstruction due to sinus sequestration in redo transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2020; 13(22): 2617–2627.
- Akodad M, Sellers S, Landes U, et al. Balloon-expandable valve for treatment of evolut valve failure: implications on neoskirt height and leaflet overhang. JACC Cardiovasc Interv. 2022; 15(4): 368–377.
- Tarantini G, Delgado V, de Backer O, et al. Redo-Transcatheter aortic valve implantation using the SAPIEN 3/ultra transcatheter heart valves-expert consensus on procedural planning and techniques. Am J Cardiol. 2023; 192: 228–244.
- Greenbaum AB, Kamioka N, Vavalle JP, et al. Balloon-assisted BASILICA to facilitate redo TAVR. JACC Cardiovasc Interv. 2021; 14(5): 578–580.
- Makkar RR, Fontana G, Jilaihawi H, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med. 2015; 373(21): 2015–2024.
- Chakravarty T, Søndergaard L, Friedman J, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet. 2017; 389(10087): 2383–2392.
- Bogyi M, Schernthaner RE, Loewe C, et al. Subclinical leaflet thrombosis after transcatheter aortic valve replacement: a meta-analysis. JACC Cardiovasc Interv. 2021; 14(24): 2643–2656.
- Abdel-Wahab M, Simonato M, Latib A, et al. Clinical valve thrombosis after transcatheter aortic valve-in-valve implantation. Circ Cardiovasc Interv. 2018; 11(11): e006730.
- Brown ML, Park SJ, Sundt TM, et al. Early thrombosis risk in patients with biologic valves in the aortic position. J Thorac Cardiovasc Surg. 2012; 144(1): 108–111.
- Vahidkhah K, Javani S, Abbasi M, et al. Blood stasis on transcatheter valve leaflets and implications for valve-in-valve leaflet thrombosis. Ann Thorac Surg. 2017; 104(3): 751–759.
- Hatoum H, Moore BL, Maureira P, et al. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J Thorac Cardiovasc Surg. 2017; 154(1): 32–43.e1.
- Hein M, Schoechlin S, Schulz U, et al. Long-Term follow-up of hypoattenuated leaflet thickening after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2022; 15(11): 1113–1122.
- Dangas GD, Tijssen JGP, Wöhrle J, et al. GALILEO Investigators. A controlled trial of rivaroxaban after transcatheter aortic-valve replacement. N Engl J Med. 2020; 382(2): 120–129.
- D'Ascenzo F, Salizzoni S, Saglietto A, et al. Incidence, predictors and cerebrovascular consequences of leaflet thrombosis after transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2019; 56(3): 488–494.
- Parma R, Zembala MO, Dąbrowski M, et al. Transcatheter aortic valve implantation. Expert Consensus of the Association of Cardiovascular Interventions of the Polish Cardiac Society and the Polish Society of Cardio-Thoracic Surgeons, approved by the Board of the Polish Cardiac Society…. Kardiol Pol. 2017; 75(9): 937–964.
- Tamagnini G, Bourguignon T, Rega F, et al. Device profile of the Inspiris Resilia valve for aortic valve replacement: overview of its safety and efficacy. Expert Rev Med Devices. 2021; 18(3): 239–244.
- Tchétché D, Kodali SK, Dvir D. First dedicated transcatheter leaflet splitting device: the ShortCut device. EuroIntervention. 2022; 18(5): e428–e429.
- Dvir D, Leon MB, Abdel-Wahab M, et al. First-in-Human dedicated leaflet splitting device for prevention of coronary obstruction in transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2023; 16(1): 94–102.
- Huczek Z, Rymuza B, Mazurek M, et al. Temporal trends of transcatheter aortic valve implantation in a high-volume academic center over 10 years. Kardiol Pol. 2021; 79(7–8): 820–826.
- Piazza N, Bleiziffer S, Brockmann G, et al. Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve: from concept to clinical application and evaluation (part 1). JACC Cardiovasc Interv. 2011; 4(7): 721–732.
- Mylotte D, Osnabrugge RLJ, Martucci G, et al. Failing surgical bioprosthesis in aortic and mitral position. EuroIntervention. 2013; 9 Suppl: S77–S83.
- Arsalan M, Walther T. Durability of prostheses for transcatheter aortic valve implantation. Nat Rev Cardiol. 2016; 13(6): 360–367.
- Jones BM, Krishnaswamy A, Tuzcu EM, et al. Matching patients with the ever-expanding range of TAVI devices. Nat Rev Cardiol. 2017; 14(10): 615–626.