Very long-term follow-up of patients with coronary bifurcation lesions treated with bioresorbable scaffolds
Abstract
Backgrounds: The data concerning the use of bioresorbable vascular scaffolds (BVS) in coronary bifurcation lesions are limited.
Aims: The objective of the study was to evaluate the early and very long-term clinical outcomes of bifurcation stenting with ABSORB BVS.
Methods: One hundred consecutive patients with coronary bifurcation lesions treated with BVS were included. A total of 124 BVS were implanted. Provisional side branch stenting was performed in 66 patients, distal main stenting in 14 patients, systematic T stenting in 2, and T with minimal protrusion (TAP) in 5 patients. Side branch ostial stenting was performed in additional 12 patients.
Results: The procedural success was achieved in 98% of patients. In long-term follow-up, the rate of cardiac death was 4.0%, target vessel myocardial infarction was 5.0%, and target vessel revascularization (TVR) was 11%. The cumulative incidence of definite/probable scaffold thrombosis (ST) was 2% at long-term follow-up. Comparison with the historical drug-eluting stents (DES) group revealed higher mortality and major adverse cardiac events rate in the ABSORB group.
Conclusions: Stenting of coronary bifurcation lesions of low-to-moderate complexity with BVS was feasible with good acute performance and acceptable results. However, the risk of death and major adverse cardiovascular events was higher as compared with DES.
Keywords: bifurcation lesionbioresorbable scaffoldspercutaneous coronary interventio
References
- Pan M, Suárez de Lezo J, Medina A, et al. Simple and complex stent strategies for bifurcated coronary arterial stenosis involving the side branch origin. Am J Cardiol. 1999; 83(9): 1320–1325.
- Lefèvre T, Louvard Y, Morice MC, et al. Stenting of bifurcation lesions: classification, treatments, and results. Catheter Cardiovasc Interv. 2000; 49(3): 274–283, doi: 10.1002/(sici)1522-726x(200003)49:3<274::aid-ccd11>3.0.co;2-n.
- Al Suwaidi J, Berger PB, Rihal CS, et al. Immediate and long-term outcome of intracoronary stent implantation for true bifurcation lesions. J Am Coll Cardiol. 2000; 35(4): 929–936.
- Colombo A, Moses JW, Morice MC, et al. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation. 2004; 109(10): 1244–1249.
- Hildick-Smith D, de Belder AJ, Cooter N, et al. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: the British Bifurcation Coronary Study: old, new, and evolving strategies. Circulation. 2010; 121(10): 1235–1243.
- Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA. 2005; 293(17): 2126–2130.
- Hoye A, Ong ATL, Aoki J, et al. Thirty-day incidence and six-month clinical outcome of thrombotic stent occlusion after bare-metal, sirolimus, or paclitaxel stent implantation. J Am Coll Cardiol. 2005; 45(6): 947–953.
- Colombo A, Bramucci E, Saccà S, et al. Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) Study. Circulation. 2009; 119(1): 71–78.
- Lüscher TF, Steffel J, Eberli FR, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation. 2007; 115(8): 1051–1058.
- Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011; 57(11): 1314–1322.
- Brugaletta S, Heo JHo, Garcia-Garcia HM, et al. Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy? Eur Heart J. 2012; 33(11): 1325–1333.
- Serruys PW, Onuma Y, Garcia-Garcia HM, et al. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention. 2014; 9(11): 1271–1284.
- Louvard Y, Medina A, Stankovic G. Definition and classification of bifurcation lesions and treatments. EuroIntervention. 2010; 6 Suppl J: J31–J35.
- Medina A, Lezo JS, Pan M. A New Classification of Coronary Bifurcation Lesions. Rev Esp Cardiol. 2006; 59(2): 183.
- Drewnicki A. Early and long–term evaluation of the results of implantation of a new generation of antiproliferative drug–eluting stents. Dissertation. 1st Department of Cardiology, Chair of Cardiology, Poznan University of Medical Sciences, Poznań 2018.
- Otsuka F, Pacheco E, Perkins LEL, et al. Long-term safety of an everolimus-eluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model. Circ Cardiovasc Interv. 2014; 7(3): 330–342.
- Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007; 115(17): 2344–2351.
- White HD, Thygesen K, Alpert JS, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012; 33(20): 2551–2567.
- Hildick-Smith D, de Belder AJ, Cooter N, et al. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: the British Bifurcation Coronary Study: old, new, and evolving strategies. Circulation. 2010; 121(10): 1235–1243.
- Chen SL, Santoso T, Zhang JJ, et al. A randomized clinical study comparing double kissing crush with provisional stenting for treatment of coronary bifurcation lesions: results from the DKCRUSH-II (Double Kissing Crush versus Provisional Stenting Technique for Treatment of Coronary Bifurcation Lesions) trial. J Am Coll Cardiol. 2011; 57(8): 914–920.
- Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention. 2015; 10(10): 1144–1153.
- Tamburino C, Latib A, van Geuns RJ, et al. Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention. 2015; 11(1): 45–52.
- Tamburino C, Latib A, van Geuns RJ, et al. Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention. 2015; 11(1): 45–52.
- Kolandaivelu K, Swaminathan R, Gibson WJ, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 2011; 123(13): 1400–1409.
- Łanocha M, Lesiak M. Complete healing of a bifurcation lesion treated with the implantation of 2 bioresorbable vascular scaffolds with the T and small protrusion technique. Kardiol Pol. 2019; 77(4): 488–489.
- Lesiak M, Łanocha M, Araszkiewicz A, et al. Percutaneous coronary intervention for chronic total occlusion of the coronary artery with the implantation of bioresorbable everolimus-eluting scaffolds. Poznan CTO-Absorb Pilot Registry. EuroIntervention. 2016; 12(2): e144–e151.
- Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016; 388(10059): 2479–2491.
- Kereiakes DJ, Ellis SG, Metzger DC, et al. ABSORB III Investigators, ABSORB III Investigators. 3-Year Clinical Outcomes With Everolimus-Eluting Bioresorbable Coronary Scaffolds: The ABSORB III Trial. J Am Coll Cardiol. 2017; 70(23): 2852–2862.
- Neumann FJ, Sousa-Uva M, Ahlsson A, et al. ESC Scientific Document Group, ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019; 40(2): 87–165.
- Włodarczak A, Łanocha M, Lesiak M, et al. Long-term clinical follow-up of the resorbable magnesium scaffolds in acute coronary syndrome patients. Kardiol Pol. 2021; 79(7-8): 827–832.