Effect of a mobile application and smart devices on heart rate variability in diabetic patients with high cardiovascular risk: A sub-study of the LIGHT randomized clinical trial
Abstract
Background: This investigation aims to evaluate the effect of a mobile application and smart devices on frequency and time domains of heart rate variability (HRV) in diabetic patients in 1-year follow-up.
Methods: This is post-hoc analysis of a diabetic subgroup of “Lifestyle Intervention usinG mobile technology in patients with high cardiovascular risk: a pragmatic randomized clinical Trial” (LIGHT). One hundred and nine and 118 patients were enrolled in two arms: the intervention plus usual care and the usual care arm. The study outcome was the 1-year HRV parameters adjusted to the baseline HRV parameters. HRV measures were recorded for every patient at the randomization and final visits with 24-hour Holter monitoring.
Results: There was an improvement in the standard deviation of normal to normal (SDNN) R-R intervals 24-hour by 4.8 (adjusted treatment effect 4.8, 95% confidence interval [CI], 0.1–9.5; P = 0.044) in the intervention-plus-usual-care arm compared to usual care after a 1-year follow-up. The improvement was also experienced in other HRV time domains including standard deviation of the mean R-R intervals calculated over a 5-minute period, SDNN, square root of the mean squared difference of successive R-R intervals, and the percentage of the differences between adjacent normal R-R intervals exceeding 50 milliseconds. A significant enhancement was also detected in HRV frequency domains of total power low frequency and high frequency in the intervention plus usual care compared to usual care after a 1-year follow-up.
Conclusions: The mobile application and smart device technology compared to usual care alone improved HRV parameters in diabetic patients at 1-year follow-up.
Keywords: diabetes mellitusheart rate variabilitymobile application
References
- Goswami N, Abulafia C, Vigo D, et al. Falls risk, circadian rhythms and melatonin: current perspectives. Clin Interv Aging. 2020; 15: 2165–2174.
- Agashe S, Petak S. Cardiac autonomic neuropathy in diabetes mellitus. Methodist Debakey Cardiovasc J. 2018; 14(4): 251–256.
- Wichterle D, Simek J, La Rovere MT, et al. Prevalent low-frequency oscillation of heart rate: novel predictor of mortality after myocardial infarction. Circulation. 2004; 110(10): 1183–1190.
- Lu HY, Huang APH, Kuo LT. Prognostic value of variables derived from heart rate variability in patients with traumatic brain injury after decompressive surgery. PLoS One. 2021; 16(2): e0245792.
- Huikuri HV, Stein PK. Heart rate variability in risk stratification of cardiac patients. Prog Cardiovasc Dis. 2013; 56(2): 153–159.
- Valensi P, Extramiana F, Lange C, et al. DESIR Study Group. Influence of blood glucose on heart rate and cardiac autonomic function. The DESIR study. Diabet Med. 2011; 28(4): 440–449.
- Maser RE, Mitchell BD, Vinik AI, et al. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care. 2003; 26(6): 1895–1901.
- Valensi P, Sachs RN, Harfouche B, et al. Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care. 2001; 24(2): 339–343.
- Plaza-Florido A, Sacha J, Alcantara J. Short-term heart rate variability in resting conditions: methodological considerations. Kardiol Pol. 2021; 79(7-8): 745–755.
- Liang X, Wang Q, Yang X, et al. Effect of mobile phone intervention for diabetes on glycaemic control: a meta-analysis. Diabet Med. 2011; 28(4): 455–463.
- Bonoto BC, de Araújo VE, Godói IP, et al. Efficacy of mobile apps to support the care of patients with diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. JMIR Mhealth Uhealth. 2017; 5(3): e4.
- Tekkeşin Aİ, Hayıroğlu Mİ, Çinier G, et al. Lifestyle intervention using mobile technology and smart devices in patients with high cardiovascular risk: A pragmatic randomised clinical trial. Atherosclerosis. 2021; 319: 21–27.
- Tekkesin I, Cinier G, Hayiroglu M. Rationale and design of lifestyle intervention using mobile technology in patients with high cardiovascular risk: a pragmatic randomized clinical trial. Turk Kardiyol Dern Ars. 2020; 48(2): 149–157.
- Guo X, Gu X, Jiang J, et al. A hospital-community-family-based telehealth program for patients with chronic heart failure: single-arm, prospective feasibility study. JMIR Mhealth Uhealth. 2019; 7(12): e13229.
- Guo Y, Lane DA, Wang L. Mobile health technology to improve care for patients with atrial fibrillation. J Am Coll Cardiol. 2020; 75(13): 1523–1534.
- Quinn CC, Shardell MD, Terrin ML, et al. Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care. 2011; 34(9): 1934–1942.
- Block G, Azar KMj, Romanelli RJ, et al. Diabetes prevention and weight loss with a fully automated behavioral intervention by email, web, and mobile phone: a randomized controlled trial among persons with prediabetes. J Med Internet Res. 2015; 17(10): e240.
- Fukuoka Y, Gay CL, Joiner KL, et al. A novel diabetes prevention intervention using a mobile app: a randomized controlled trial with overweight adults at risk. Am J Prev Med. 2015; 49(2): 223–237.
- Muralidharan S, Ranjani H, Mohan Anjana R, et al. Engagement and weight loss: results from the mobile health and diabetes trial. Diabetes Technol Ther. 2019; 21(9): 507–513.
- Williams SM, Eleftheriadou A, Alam U, et al. Cardiac autonomic neuropathy in obesity, the metabolic syndrome and prediabetes: a narrative review. Diabetes Ther. 2019; 10(6): 1995–2021.
- Villafaina S, Collado-Mateo D, Fuentes JP, et al. Physical exercise improves heart rate variability in patients with type 2 diabetes: a systematic review. Curr Diab Rep. 2017; 17(11): 110.
- Helleputte S, De Backer T, Lapauw B, et al. The relationship between glycaemic variability and cardiovascular autonomic dysfunction in patients with type 1 diabetes: A systematic review. Diabetes Metab Res Rev. 2020; 36(5): e3301.
- Jaiswal M, McKeon K, Comment N, et al. Association between impaired cardiovascular autonomic function and hypoglycemia in patients with type 1 diabetes. Diabetes Care. 2014; 37(9): 2616–2621.