Aortic valve replacement with a novel anti-calcification technology platform
Abstract
Background and aim: The primary cause of long-term failure of bioprosthetic valves is structural valve deterioration due to tissue calcification. A novel anti-calcification technology platform was developed that may irreversibly block calcium binding sites in bioprosthetic valves.
Methods: Twenty patients with severe aortic stenosis underwent isolated aortic valve replacement using a bioprosthetic valve treated with the novel anti-calcification technology. Mean patient age and body mass index was 73.7 ± 4.8 years and 30.1 ± 5.8 kg/m2, respectively. Females comprised 65% of the patient population, and 30% of the population was in New York Heart Association class III/IV. Other baseline characteristics included hypertension (90%), hyperlipidaemia (75%), diabetes (35%), renal failure (25%), pulmonary disease (10%), and myocardial infarction (10%). Patients were followed-up for up to one year. Haemodynamic performance was evaluated by echocardiography. All complications were recorded.
Results: There was one early death on postoperative day five. No other complications were noted up to discharge. Follow-up at 3–6 months and at one year were both 100%. At one year, no valve-related mortality, structural valve deterioration, major paravalvular leak (> 2+), thromboembolic events, major bleeding, prosthetic valve endocarditis, or reoperation were observed. Mean effective orifice area increased from 1.0 ± 0.5 cm2 at baseline to 1.8 ± 0.5 cm2 at one year. Mean gradient decreased from 54.8 ± 21.2 mm Hg at baseline to 11.3 ± 3.4 mm Hg at one year.
Conclusions: This early clinical experience using an aortic bioprosthetic valve treated with a novel anti-calcification tissue processing technology demonstrated excellent valve performance, durability, and safety. No valve-related complications were noted. Longer-term follow-up is needed to verify these promising results.
Keywords: aortic valve replacementanti-calcification treatment