Tom 5, Nr 1 (2024)
Artykuł przeglądowy
Opublikowany online: 2024-06-21
Wyświetlenia strony 138
Wyświetlenia/pobrania artykułu 3
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Nabłonek dróg oddechowych w przewlekłej obturacyjnej chorobie płuc — struktura, funkcja i dysfunkcja

Paweł Górski1
DOI: 10.5603/pp.99671
Pneum Pol 2024;5(1):1-9.

Streszczenie

Nabłonek dróg oddechowych dróg oddechowych przechodzi poważne zmiany strukturalne i czynnościowe wskutek działania zewnętrznych bodźców fizycznych, chemicznych i alergizujących. Komórki podstawne stanowią nie tylko element stałej struktury o istotnym znaczeniu czynnościowym, ale pełnią rolę progenitora w odnowie nabłonka zarówno w zdrowiu, jak i w chorobie. W pracy omówiono te następstwa pobudzenia komórek, które z jednej strony wydają się mieć istotne znaczenie dla klinicysty, z drugiej stanowią przedmiot poszukiwań terapeutycznych.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 2020; 145(6): 1499–1509.
  2. Steelant B, Farré R, Wawrzyniak P, et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol. 2016; 137(4): 1043–1053.e5.
  3. Heijink IH, Noordhoek JA, Timens W, et al. Abnormalities in airway epithelial junction formation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014; 189(11): 1439–1442.
  4. Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am J Respir Crit Care Med. 1998; 157(6 Pt 1): 2000–2006.
  5. Evans MJ, Van Winkle LS, Fanucchi MV, et al. Cellular and molecular characteristics of basal cells in airway epithelium. Exp Lung Res. 2001; 27(5): 401–415.
  6. Zhao R, Fallon TR, Saladi SV, et al. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell. 2014; 30(2): 151–165.
  7. Kim SHJ, Matthay MA, Mostov K, et al. Simulation of lung alveolar epithelial wound healing in vitro. J R Soc Interface. 2010; 7(49): 1157–1170.
  8. Byers DE, Alexander-Brett J, Patel AC, et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest. 2013; 123(9): 3967–3982.
  9. Ordovas-Montanes J, Dwyer DF, Nyquist SK, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018; 560(7720): 649–654.
  10. Varricchi G, Ferri S, Pepys J, et al. Biologics and airway remodeling in severe asthma. Allergy. 2022; 77(12): 3538–3552.
  11. Watson JK, Rulands S, Wilkinson AC, et al. Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium. Cell Rep. 2015; 12(1): 90–101.
  12. Mori M, Mahoney JE, Stupnikov MR, et al. Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development. 2015; 142(2): 258–267.
  13. Xing Y, Li C, Li A, et al. Signaling via Alk5 controls the ontogeny of lung Clara cells. Development. 2010; 137(5): 825–833.
  14. Basil MC, Katzen J, Engler AE, et al. The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell. 2020; 26(4): 482–502.
  15. Goda H, Nakashiro Ki, Sano Y, et al. KRT13 and UPK1B for differential diagnosis between metastatic lung carcinoma from oral squamous cell carcinoma and lung squamous cell carcinoma. Scientific Reports. 2023; 13(1).
  16. Shen Q, Wang H, Zhang L. TP63 Functions as a Tumor Suppressor Regulated by GAS5/miR-221-3p Signaling Axis in Human Non-Small Cell Lung Cancer Cells. Cancer Manag Res. 2023; 15: 217–231.
  17. Montoro DT, Haber AL, Biton M, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018; 560(7718): 319–324.
  18. Morimoto M, Nishinakamura R, Saga Y, et al. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development. 2012; 139(23): 4365–4373.
  19. Zhu L, An L, Ran Di, et al. The Club Cell Marker SCGB1A1 Downstream of FOXA2 is Reduced in Asthma. Am J Respir Cell Mol Biol. 2019; 60(6): 695–704.
  20. Laucho-Contreras ME, Polverino F, Gupta K, et al. Protective role for club cell secretory protein-16 (CC16) in the development of COPD. Eur Respir J. 2015; 45(6): 1544–1556.
  21. Costain G, Liu Z, Mennella V, et al. Hereditary Mucin Deficiency Caused by Biallelic Loss of Function of . Am J Respir Crit Care Med. 2022; 205(7): 761–768.
  22. Radicioni G, Ceppe A, Ford AA, et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2021; 9(11): 1241–1254.
  23. Okuda K, Chen G, Subramani DB, et al. Localization of Secretory Mucins MUC5AC and MUC5B in Normal/Healthy Human Airways. Am J Respir Crit Care Med. 2019; 199(6): 715–727.
  24. Noguchi M, Furukawa KT, Morimoto M. Pulmonary neuroendocrine cells: physiology, tissue homeostasis and disease. Dis Model Mech. 2020; 13(12).
  25. Ouadah Y, Rojas ER, Riordan DP, et al. Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell. 2019; 179(2): 403–416.e23.
  26. Szucs B, Szucs C, Petrekanits M, et al. Molecular Characteristics and Treatment of Endothelial Dysfunction in Patients with COPD: A Review Article. Int J Mol Sci. 2019; 20(18).
  27. Linnoila RI. Functional facets of the pulmonary neuroendocrine system. Lab Invest. 2006; 86(5): 425–444.
  28. Hill DB, Button B, Rubinstein M, et al. Physiology and pathophysiology of human airway mucus. Physiol Rev. 2022; 102(4): 1757–1836.
  29. Sui P, Wiesner DL, Xu J, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018; 360(6393).
  30. Kohanski MA, Workman AD, Patel NN, et al. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2018; 142(2): 460–469.e7.
  31. Lee RJ, Kofonow JM, Rosen PL, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014; 124(3): 1393–1405.
  32. Deprez M, Zaragosi LE, Truchi M, et al. A Single-Cell Atlas of the Human Healthy Airways. Am J Respir Crit Care Med. 2020; 202(12): 1636–1645.
  33. Tümmler B. Puzzle resolved: CFTR mediates chloride homeostasis by segregating absorption and secretion to different cell types. J Clin Invest. 2023; 133(20).
  34. Lei L, Traore S, Romano Ibarra GS, et al. CFTR-rich ionocytes mediate chloride absorption across airway epithelia. J Clin Invest. 2023; 133(20).
  35. Carlier FM, Sibille Y, Pilette C. The epithelial barrier and immunoglobulin A system in allergy. Clin Exp Allergy. 2016; 46(11): 1372–1388.
  36. Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol. 2021; 12: 691227.
  37. Crystal RG. Airway basal cells. The "smoking gun" of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014; 190(12): 1355–1362.
  38. Ghosh M, Miller YE, Nakachi I, et al. Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2018; 197(7): 885–896.
  39. Shaykhiev R, Crystal RG. Early events in the pathogenesis of chronic obstructive pulmonary disease. Smoking-induced reprogramming of airway epithelial basal progenitor cells. Ann Am Thorac Soc. 2014; 11 Suppl 5(Suppl 5): S252–S258.
  40. Goldfarbmuren KC, Jackson ND, Sajuthi SP, et al. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nat Commun. 2020; 11(1): 2485.
  41. Araya J, Cambier S, Markovics JA, et al. Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients. J Clin Invest. 2007; 117(11): 3551–3562.
  42. Byers DE, Alexander-Brett J, Patel AC, et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest. 2013; 123(9): 3967–3982.
  43. Ryan DM, Vincent TL, Salit J, et al. Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. PLoS One. 2014; 9(2): e88051.
  44. Fukui T, Shaykhiev R, Agosto-Perez F, et al. Lung adenocarcinoma subtypes based on expression of human airway basal cell genes. European Respiratory Journal. 2013; 42(5): 1332–1344.
  45. Gamez AS, Gras D, Petit A, et al. Supplementing defect in club cell secretory protein attenuates airway inflammation in COPD. Chest. 2015; 147(6): 1467–1476.
  46. Spella M, Lilis I, Pepe MAa, et al. Club cells form lung adenocarcinomas and maintain the alveoli of adult mice. Elife. 2019; 8.
  47. Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol. 2021; 14(5): 978–990.
  48. Kim V, Kelemen SE, Abuel-Haija M, et al. Small airway mucous metaplasia and inflammation in chronic obstructive pulmonary disease. COPD. 2008; 5(6): 329–338.
  49. Saetta M, Turato G, Baraldo S, et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med. 2000; 161(3 Pt 1): 1016–1021.
  50. Osan J, Talukdar SN, Feldmann F, et al. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease. Microbiol Spectr. 2022; 10(4): e0045922.
  51. Leopold PL, O'Mahony MJ, Lian XJ, et al. Smoking is associated with shortened airway cilia. PLoS One. 2009; 4(12): e8157.
  52. Perotin JM, Coraux C, Lagonotte E, et al. Alteration of primary cilia in COPD. Eur Respir J. 2018; 52(1).
  53. Evans MJ, Van Winkle LS, Fanucchi MV, et al. The attenuated fibroblast sheath of the respiratory tract epithelial-mesenchymal trophic unit. Am J Respir Cell Mol Biol. 1999; 21(6): 655–657.
  54. Nishioka M, Venkatesan N, Dessalle K, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015; 16(1): 72.
  55. Su X, Wu W, Zhu Z, et al. The effects of epithelial-mesenchymal transitions in COPD induced by cigarette smoke: an update. Respir Res. 2022; 23(1): 225.
  56. Zhu L, Xu F, Kang X, et al. The antioxidant N-acetylcysteine promotes immune response and inhibits epithelial-mesenchymal transition to alleviate pulmonary fibrosis in chronic obstructive pulmonary disease by suppressing the VWF/p38 MAPK axis. Mol Med. 2021; 27(1): 97.
  57. Mahmood MQ, Ward C, Muller HK, et al. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease. Med Oncol. 2017; 34(3): 45.
  58. Szalontai K, Gémes N, Furák J, et al. Chronic Obstructive Pulmonary Disease: Epidemiology, Biomarkers, and Paving the Way to Lung Cancer. J Clin Med. 2021; 10(13).
  59. McGuinness AJ, Sapey E. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. J Clin Med. 2017; 6(2).
  60. Taniguchi A, Tsuge M, Miyahara N, et al. Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel). 2021; 10(10).
  61. Nasri A, Foisset F, Ahmed E, et al. Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells. 2021; 10(12).
  62. Mahmood MQ, Walters EH, Shukla SD, et al. β-catenin, Twist and Snail: Transcriptional regulation of EMT in smokers and COPD, and relation to airflow obstruction. Sci Rep. 2017; 7(1): 10832.
  63. Zheng X, Li W, Ren L, et al. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol Ther. 2019; 195: 85–99.
  64. Li Z, Li Y, Liu S, et al. Extracellular S100A4 as a key player in fibrotic diseases. J Cell Mol Med. 2020; 24(11): 5973–5983.
  65. Sohal SS, Soltani A, Reid D, et al. A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial-mesenchymal transition (EMT) in large airway samples in COPD: an exploratory proof of concept study. Int J Chron Obstruct Pulmon Dis. 2014; 9: 533–542.
  66. Ge F, Feng Yi, Huo Z, et al. Inhaled corticosteroids and risk of lung cancer among chronic obstructive pulmonary disease patients: a comprehensive analysis of nine prospective cohorts. Transl Lung Cancer Res. 2021; 10(3): 1266–1276.
  67. Jen R, Rennard SI, Sin DD. Effects of inhaled corticosteroids on airway inflammation in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2012; 7: 587–595.
  68. Kunz LIZ, Ten Hacken NH, Lapperre TS, et al. GLUCOLD Study Group, GLUCOLD Study Group. Airway inflammation in COPD after long-term withdrawal of inhaled corticosteroids. Eur Respir J. 2017; 49(1).
  69. Lu W, Lillehoj EP, Kim KC. Effects of dexamethasone on Muc5ac mucin production by primary airway goblet cells. Am J Physiol Lung Cell Mol Physiol. 2005; 288(1): L52–L60.
  70. Chen Y, Nickola TJ, DiFronzo NL, et al. Dexamethasone-mediated repression of MUC5AC gene expression in human lung epithelial cells. Am J Respir Cell Mol Biol. 2006; 34(3): 338–347.
  71. Groneberg DA, Eynott PR, Lim S, et al. Expression of respiratory mucins in fatal status asthmaticus and mild asthma. Histopathology. 2002; 40(4): 367–373.
  72. Raymakers A, Sin DD, Sadatsafavi M, et al. Statin use and lung cancer risk in chronic obstructive pulmonary disease patients: a population-based cohort study. Respir Res. 2020; 21(1): 118.
  73. Chen CC, Hsu YP, Liu JC, et al. Statins Dose-Dependently Exert Significant Chemopreventive Effects Against Various Cancers in Chronic Obstructive Pulmonary Disease Patients: A Population-Based Cohort Study. J Cancer. 2016; 7(13): 1892–1900.
  74. Yamaya M, Nishimura H, Hatachi Y, et al. Inhibitory effects of tiotropium on rhinovirus infection in human airway epithelial cells. Eur Respir J. 2012; 40(1): 122–132.
  75. Chen CH, Li YR, Lin SH, et al. Tiotropium/Olodaterol treatment reduces cigarette smoke extract-induced cell death in BEAS-2B bronchial epithelial cells. BMC Pharmacol Toxicol. 2020; 21(1): 74.
  76. Jeffery PK, Wardlaw AJ, Nelson FC, et al. Bronchial biopsies in asthma. An ultrastructural, quantitative study and correlation with hyperreactivity. Am Rev Respir Dis. 1989; 140(6): 1745–1753.
  77. Ladjemi MZ, Gras D, Dupasquier S, et al. Bronchial Epithelial IgA Secretion Is Impaired in Asthma. Role of IL-4/IL-13. Am J Respir Crit Care Med. 2018; 197(11): 1396–1409.
  78. Pezzulo AA, Tudas RA, Stewart CG, et al. HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia. J Clin Invest. 2019; 129(2): 744–758.