Tom 4, Nr 4 (2023)
Artykuł przeglądowy
Opublikowany online: 2024-02-12
Wyświetlenia strony 104
Wyświetlenia/pobrania artykułu 6
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Dym palonego drewna — efekty zdrowotne

Paweł Górski1
DOI: 10.5603/pp.98151
Pneum Pol 2023;4(4):145-152.


Dym spalanego drewna stanowi najważniejszy rodzaj narażenia na biomasę w domach polskich. Przyczyną tego stanu jest coraz częstsze używanie kominków do ogrzewania mieszkań. Dym palonego drewna jest przyczyną przewlekłej choroby obturacyjnej płuc (POChP), raka płuc i chorób układu sercowo-naczyniowego. Zmiany patologiczne wywołane przez dym palonego drewna różnią się od zmian spowodowanych nałogiem tytoniowym. Także obraz kliniczny POChP w następstwie tych ekspozycji jest różny, choć w zakresie farmakoterapii postępowanie jest identyczne.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?


  1. World Health Organization. Household air pollution and health. https//
  2. Eisner MD, Anthonisen N, Coultas D, et al. Committee on Nonsmoking COPD, Environmental and Occupational Health Assembly. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010; 182(5): 693–718.
  3. Adeloye D, Song P, Zhu Y, et al. NIHR RESPIRE Global Respiratory Health Unit. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med. 2022; 10(5): 447–458.
  4. Hu G, Zhou Y, Tian J, et al. Risk of COPD from exposure to biomass smoke: a metaanalysis. Chest. 2010; 138(1): 20–31.
  5. Kurmi OmP, Semple S, Simkhada P, et al. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax. 2010; 65(3): 221–228.
  6. Smith KR, Mehta S, Maeusezahl-Feuz M. Indoor smoke from household solid fuels. In: Maeusezahl-Feuz M. ed. Comparative quantification of health risks: Global and regional burden of disease due to selected major risk factors. World Health Organization., Geneva Switzerland 2004: 1435–1493.
  7. Fullerton DG, Suseno A, Semple S, et al. Wood smoke exposure, powerty and impaired lung function in Malawian adults. Int J Tuberc Lung Dis. 2011; 15: 391–398.
  8. Lopez AD, Mathers CD, Ezzati M, et al. Global and regional burden of disease and risk factors, 201: systematic analysis of population health data. Lancet. 2006; 367: 1147–1157.
  9. Balmes JR. When smoke gets in your lungs. Proc Am Thorac Soc. 2010; 7(2): 98–101.
  10. Gordon SB, Bruce NG, Grigg J, et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med. 2014; 2(10): 823–860.
  11. Sana A, Somda SMA, Meda N, et al. Chronic obstructive pulmonary disease associated with biomass fuel use in women: a systematic review and meta-analysis. BMJ Open Respir Res. 2018; 5(1): e000246.
  12. Çolak Y, Marott JL, Vestbo J, et al. Overweight and obesity may lead to under-diagnosis of airflow limitation: findings from the Copenhagen City Heart Study. COPD. 2015; 12(1): 5–13.
  13. Al Ghobain M. The effect of obesity on spirometry tests among healthy non-smoking adults. BMC Pulm Med. 2012; 12: 10.
  14. Landbo C, Prescott E, Lange P, et al. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999; 160(6): 1856–1861.
  15. Ji Z, de Miguel-Díez J, Castro-Riera CR, et al. Differences in the Outcome of Patients with COPD according to Body Mass Index. J Clin Med. 2020; 9(3): 710.
  16. Matsunaga K, Harada M, Suizu J, et al. Comorbid Conditions in Chronic Obstructive Pulmonary Disease: Potential Therapeutic Targets for Unmet Needs. J Clin Med. 2020; 9(10).
  17. Zhou Y, Wang D, Liu S, et al. The association between BMI and COPD: the results of two population-based studies in Guangzhou, China. COPD. 2013; 10(5): 567–572.
  18. White AJ, Sandler DP. Indoor Wood-Burning Stove and Fireplace Use and Breast Cancer in a Prospective Cohort Study. Environ Health Perspect. 2017; 125(7): 077011.
  19. Rokoff LB, Koutrakis P, Garshick E, et al. Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among Pediatricians. Curr Probl Pediatr Adolesc Health Care. 2017; 47(6): 123–141.
  20. Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ Int. 2020; 143: 105974.
  21. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 119. IARC 2019.
  22. Shupler M, Hystad P, Birch A, et al. PURE-AIR study. Household and personal air pollution exposure measurements from 120 communities in eight countries: results from the PURE-AIR study. Lancet Planet Health. 2020; 4(10): e451–e462.
  23. Rehfuess E. World Health Organization. Fuel for life: Household energy and health.
  24. Nicolaou L, Fandiño-Del-Rio M, Koehler K, et al. Size distribution and lung-deposited doses of particulate matter from household exposure to biomass smoke. Indoor Air. 2021; 31(1): 51–62.
  25. Ortiz-Quintero B, Martínez-Espinosa I, Pérez-Padilla R. Mechanisms of Lung Damage and Development of COPD Due to Household Biomass-Smoke Exposure: Inflammation, Oxidative Stress, MicroRNAs, and Gene Polymorphisms. Cells. 2022; 12(1).
  26. U.S. Environmental Protection Agency. Strategies for reducing residential wood smoke. Office of Air QualityPlanning and Standards. Research Triangle Park, NC 2013.
  27. Ward TJ, Semmens EO, Weiler E, et al. Efficacy of interventions targeting household air pollution from residential wood stoves. J Expo Sci Environ Epidemiol. 2017; 27(1): 64–71.
  28. Wheeler AJ, Gibson MD, MacNeill M, et al. Impacts of air cleaners on indoor air quality in residences impacted by wood smoke. Environ Sci Technol. 2014; 48(20): 12157–12163.
  29. Walker ES, Semmens EO, Belcourt A, et al. Efficacy of Air Filtration and Education Interventions on Indoor Fine Particulate Matter and Child Lower Respiratory Tract Infections among Rural U.S. Homes Heated with Wood Stoves: Results from the KidsAIR Randomized Trial. Environ Health Perspect. 2022; 130(4): 47002.
  30. Walker ES, Noonan CW, Semmens EO, et al. Indoor fine particulate matter and demographic, household, and wood stove characteristics among rural US homes heated with wood fuel. Indoor Air. 2021; 31(4): 1109–1124.
  31. Ocakli B, Acarturk E, Aksoy E, et al. The impact of exposure to biomass smoke versus cigarette smoke on inflammatory markers and pulmonary function parameters in patients with chronic respiratory failure. Int J Chron Obstruct Pulmon Dis. 2018; 13: 1261–1267.
  32. Mahesh PA, Jayraj BS, Prabhakar AK, et al. Identification of a threshold for biomass exposure index for chronic bronchitis in rural women of Mysore district, Karnataka, India. Indian J Med. 2013; 137(1): 87–94.
  33. Agustí A, Celli BR, Criner GJ, et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur Respir J. 2023; 61(4).
  34. Shah A, Shah U, Jayalaksami TK, et al. COPD phenotypes according to high resolution CT scan findings. ERJ. 2014; 44(Suppl 58): 3001.
  35. Ramirez A, Sansores R, Velazquez M, et al. Nonsmoker and Biomass Exposure, in Controversies in COPD. ERS monograph SheffieldUK. 2015: 35–45.
  36. Nicolaou L, Checkley W. Differences between cigarette smoking and biomass smoke exposure: An in silico comparative assessment of particulate deposition in the lungs. Environ Res. 2021; 197: 111116.
  37. Rivera R, Cosio M, Ghezzo H, et al. Comparison of lung morphology in COPD secondary to cigarette and biomass smoke. Int J Tuberc Lung Dis. 2008; 12(8): 972–977.
  38. Perez-Rubio G, Ambrocio-Ortiz E, Lopez-Flores LA, et al. Heterozygous Genotype rs17580(PiS) in Serpina I is Associated with COPD Secondary to Biomass-Burning and Tobacco Smoking: A case-control and Population Study. Int J Chron Obstruct Pulm Dis. 2020; 15: 1181–1190.
  39. Tan WS, Shen HM, Wong WS. Dysregulated autophagy in COPD: A pathogenic process to be deciphered. Pharmacol Res. 2019; 144: 1–7.
  40. Majorek K, Krzyżosiak WJ. Rola mikroRNA w patogenezie, diagnostyce i terapii nowotworów. Współczesna Onkologia. 2006; 10(8): 359–366.
  41. Velasco-Torres Y, Ruiz V, Montaño M, et al. Participation of the miR-22-HDAC4-DLCO Axis in Patients with COPD by Tobacco and Biomass. Biomolecules. 2019; 9(12).
  42. Golpe R, Martín-Robles I, Sanjuán-López P, et al. Differences in systemic inflammation between cigarette and biomass smoke-induced COPD. Int J Chron Obstruct Pulmon Dis. 2017; 12: 2639–2646.
  43. Velasco-Torres Y, Ruiz-López V, Pérez-Bautista O, et al. miR-34a in serum is involved in mild-to-moderate COPD in women exposed to biomass smoke. BMC Pulm Med. 2019; 19(1): 227.
  44. Dickens JA, Lomas DA. CC-16 as a biomarker in chronic obstructive pulmonary disease. COPD. 2012; 9(5): 574–575.
  45. Lomas DA, Silverman EK, Edwards LD, et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) investigators. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax. 2008; 63(12): 1058–1063.
  46. Rava M, Tares L, Lavi I, et al. Serum levels of Clara cell secretory protein, asthma, and lung function in the adult general population. J Allergy Clin Immunol. 2013; 132(1): 230–232.
  47. Veerapaneni VV, Upadhyay S, Thimraj TA, et al. Circulating Secretoglobin Family 1A Member 1 (SCGB1A1) Levels as a Marker of Biomass Smoke Induced Chronic Obstructive Pulmonary Disease. Toxics. 2021; 9(9).
  48. Lee JH, Song S, Yoon SY, et al. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio as diagnostic markers for pneumonia severity. Br J Biomed Sci. 2016; 73(3): 140–142.
  49. Białas AJ, Pedone C, Piotrowski WJ, et al. Platelet distribution width as a prognostic factor in patients with COPD - pilot study. Int J Chron Obstruct Pulmon Dis. 2017; 12: 2261–2267.
  50. Ramírez-Venegas A, Sansores R, Quintana-Carrillo R, et al. FEV1 Decline in Patients with Chronic Obstructive Pulmonary Disease Associated with Biomass Exposure. Am J Respir Crit Care Med. 2014; 190(9): 996–1002.
  51. Golpe R, Martín-Robles I, Sanjuán-López P, et al. Prevalence of Major Comorbidities in Chronic Obstructive Pulmonary Disease Caused by Biomass Smoke or Tobacco. Respiration. 2017; 94(1): 38–44.
  52. Cho J, Lee CH, Hwang SS, et al. KOLD and KOCOSS Investigators. Risk of acute exacerbations in chronic obstructive pulmonary disease associated with biomass smoke compared with tobacco smoke. BMC Pulm Med. 2019; 19(1): 68.
  53. Salvi SS, Brashier BB, Londhe J, et al. Phenotypic comparison between smoking and non-smoking chronic obstructive pulmonary disease. Respir Res. 2020; 21(1): 50.
  54. Falfán-Valencia R, Ramírez-Venegas A, Pérez Lara-Albisua JL, et al. Smoke exposure from chronic biomass burning induces distinct accumulative systemic inflammatory cytokine alterations compared to tobacco smoking in healthy women. Cytokine. 2020; 131: 155089.
  55. Dutta A, Roychoudhury S, Chowdhury S, et al. Changes in sputum cytology, airway inflammation and oxidative stress due to chronic inhalation of biomass smoke during cooking in premenopausal rural Indian women. Int J Hyg Environ Health. 2013; 216(3): 301–308.
  56. Dutta A, Ray MR, Banerjee A. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels. Toxicol Appl Pharmacol. 2012; 261(3): 255–262.
  57. Muala A, Rankin G, Sehlstedt M, et al. Acute exposure to wood smoke from incomplete combustion--indications of cytotoxicity. Part Fibre Toxicol. 2015; 12: 33.
  58. Stockfelt L, Sallsten G, Almerud P, et al. Short-term chamber exposure to low doses of two kinds of wood smoke does not induce systemic inflammation, coagulation or oxidative stress in healthy humans. Inhal Toxicol. 2013; 25(8): 417–425.
  59. Forchhammer L, Møller P, Riddervold IS, et al. Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function. Part Fibre Toxicol. 2012; 9: 7.
  60. Fedak KM, Good N, Walker ES, et al. Acute Effects on Blood Pressure Following Controlled Exposure to Cookstove Air Pollution in the STOVES Study. J Am Heart Assoc. 2019; 8(14): e012246.
  61. Unosson J, Blomberg A, Sandström T, et al. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part Fibre Toxicol. 2013; 10: 20.
  62. Corsini E, Budello S, Marabini L, et al. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines. Arch Toxicol. 2013; 87(12): 2187–2199.
  63. Ceylan E, Kocyigit A, Gencer M, et al. Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass. Respir Med. 2006; 100(7): 1270–1276.
  64. Wang S, Chen Y, Hong W, et al. Chronic exposure to biomass ambient particulate matter triggers alveolar macrophage polarization and activation in the rat lung. J Cell Mol Med. 2022; 26(4): 1156–1168.
  65. Fernandes L, Rane S, Mandrekar S, et al. Eosinophilic Airway Inflammation in Patients with Stable Biomass Smoke- versus Tobacco Smoke-Associated Chronic Obstructive Pulmonary Disease. J Health Pollut. 2019; 9(24): 191209.
  66. Duan Jx, Cheng W, Zeng Yq, et al. Characteristics of Patients with Chronic Obstructive Pulmonary Disease Exposed to Different Environmental Risk Factors: A Large Cross-Sectional Study. Int J Chron Obstruct Pulmon Dis. 2020; 15: 2857–2867.