Tom 4, Nr 4 (2023)
Artykuł przeglądowy
Opublikowany online: 2024-02-12
Wyświetlenia strony 323
Wyświetlenia/pobrania artykułu 18
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Znaczenie kliniczne i zastosowanie oscylometrii

David A. Kaminsky1, Shannon J. Simpson, Kenneth I. Berger, Peter Calverley, Pedro L. de Melo, Ronald Dandurand, Raffaele L. Dellacà, Claude S. Farah, Ramon Farré, Graham L. Hall, Iulia Ioan, Charles G. Irvin, David W. Kaczka, Gregory G. King, Hajime Kurosawa, Enrico Lombardi, Geoffrey N. Maksym, François Marchal, Ellie Oostveen, Beno W. Oppenheimer, Paul D. Robinson, Maarten van den Berge, Cindy Thamrin, Tłumaczenie: dr hab. n. med. Irena Wojsyk, dr hab. n. med. Eliza Wasilewska
DOI: 10.5603/pp.97483
Pneum Pol 2023;4(4):115-134.

Streszczenie

Ostatnio opublikowany artykuł „Techniczne standardy oscylometrii oddechowej”, zawierał fizjologiczne podstawy pomiarów oscylometrycznych, szczegóły techniczne dotyczące sprzętu, wykonywania badania, kontroli jakości i raportowania wyników. W niniejszym artykule pokazano kliniczne zastosowanie oscylometrii. Obok fizjologicznych podstaw oscylometrii przedstawiono także podstawy interpretacji badania, aktualną wiedzę na temat roli oscylometrii jako czułego markera oporu dróg oddechowych, odpowiedzi na leki rozszerzające oskrzela i czynniki prowokujące skurcz oskrzeli, a także odpowiedzi na stosowane leczenie, szczególnie u chorych na astmę i przewlekłą obturacyjną chorobę płuc (POChP). Wskazano sytuacje, w których oscylometria może przynieść znaczne korzyści, tj. kiedy nie można wykonać spirometrii, ani innych badań czynnościowych układu oddechowego, np. u niemowląt, u chorych cierpiących na choroby nerwowo-mięśniowe, bezdech senny czy przebywających na oddziałach in-tensywnej terapii. Inne potencjalne obszary zastosowania klinicznego oscylometrii obejmują wykrywanie zarostowego zapalenia oskrzelików, dysfunkcji strun głosowych oraz wpływu narażenia środowiskowego. Pomimo ogromnej nadziei związanej z oscylometrią, konieczne jest dostarczenie większej liczby dowodów, potwierdzających użytecz-ność kliniczną, zanim stanie się rutynowo stosowaną metodą, do diagnozowania lub monitorowania chorób układu oddechowego.  

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Calverley PMA, Farré R. Oscillometry: old physiology with a bright future. Eur Respir J. 2020; 56(3).
  2. King GG, Bates J, Berger KI, et al. Technical standards for respiratory oscillometry. Eur Respir J. 2020; 55(2).
  3. Dandurand RJ, Lavoie JP, Lands LC, et al. Oscillometry Harmonisation Study Group. Comparison of oscillometry devices using active mechanical test loads. ERJ Open Res. 2019; 5(4).
  4. Oostveen E, Boda K, van der Grinten CPM, et al. Respiratory impedance in healthy subjects: baseline values and bronchodilator response. Eur Respir J. 2013; 42(6): 1513–1523.
  5. Hall GL, Hantos Z, Wildhaber JH, et al. Contribution of nasal pathways to low frequency respiratory impedance in infants. Thorax. 2002; 57(5): 396–399.
  6. Zannin E, Neumann RP, Dellacà R, et al. Forced oscillation measurements in the first week of life and pulmonary outcome in very preterm infants on noninvasive respiratory support. Pediatr Res. 2019; 86(3): 382–388.
  7. Udomittipong K, Sly PD, Patterson HJ, et al. Forced oscillations in the clinical setting in young children with neonatal lung disease. Eur Respir J. 2008; 31(6): 1292–1299.
  8. Verheggen M, Wilson AC, Pillow JJ, et al. Respiratory function and symptoms in young preterm children in the contemporary era. Pediatr Pulmonol. 2016; 51(12): 1347–1355.
  9. Vrijlandt EJ, Boezen HM, Gerritsen J, et al. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007; 150(3): 256–261.
  10. Evans DJ, Schultz A, Verheggen M, et al. Identifying pediatric lung disease: A comparison of forced oscillation technique outcomes. Pediatr Pulmonol. 2019; 54(6): 751–758.
  11. Thunqvist P, Gustafsson PM, Schultz ES, et al. Lung Function at 8 and 16 Years After Moderate-to-Late Preterm Birth: A Prospective Cohort Study. Pediatrics. 2016; 137(4).
  12. Simpson SJ, Logie KM, O'Dea CA, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth. Thorax. 2017; 72(8): 702–711.
  13. Simpson SJ, Turkovic L, Wilson AC, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study. Lancet Child Adolesc Health. 2018; 2(5): 350–359.
  14. Nair A, Ward J, Lipworth BJ. Comparison of bronchodilator response in patients with asthma and healthy subjects using spirometry and oscillometry. Ann Allergy Asthma Immunol. 2011; 107(4): 317–322.
  15. Clément J, Làndsér FJ, Van de Woestijne KP. Total resistance and reactance in patients with respiratory complaints with and without airways obstruction. Chest. 1983; 83(2): 215–220.
  16. Tsuburai T, Suzuki S, Tsurikisawa N, et al. [Use of forced oscillation technique to detect airflow limitations in adult Japanese asthmatics]. Arerugi. 2012; 61(2): 184–193.
  17. Cavalcanti JV, Lopes AJ, Jansen JM, et al. Detection of changes in respiratory mechanics due to increasing degrees of airway obstruction in asthma by the forced oscillation technique. Respir Med. 2006; 100(12): 2207–2219.
  18. Mori K, Shirai T, Mikamo M, et al. Colored 3-dimensional analyses of respiratory resistance and reactance in COPD and asthma. COPD. 2011; 8(6): 456–463.
  19. Paredi P, Goldman M, Alamen A, et al. Comparison of inspiratory and expiratory resistance and reactance in patients with asthma and chronic obstructive pulmonary disease. Thorax. 2010; 65(3): 263–267.
  20. Van Noord JA, Clément J, Van de Woestijne KP, et al. Total respiratory resistance and reactance in patients with asthma, chronic bronchitis, and emphysema. Am Rev Respir Dis. 1991; 143(5 Pt 1): 922–927.
  21. Liu M, Yang X, Wang Y, et al. A new inflammation marker of chronic obstructive pulmonary disease-adiponectin. World J Emerg Med. 2010; 1(3): 190–195.
  22. Kim SR, Park KH, Son NH, et al. Application of Impulse Oscillometry in Adult Asthmatic Patients With Preserved Lung Function. Allergy Asthma Immunol Res. 2020; 12(5): 832–843.
  23. Hellinckx J, De Boeck K, Bande-Knops J, et al. Bronchodilator response in 3-6.5 years old healthy and stable asthmatic children. Eur Respir J. 1998; 12(2): 438–443.
  24. Malmberg LP, Pelkonen AS, Haahtela T, et al. Exhaled nitric oxide rather than lung function distinguishes preschool children with probable asthma. Thorax. 2003; 58(6): 494–499.
  25. Thamrin C, Gangell CL, Udomittipong K, et al. Assessment of bronchodilator responsiveness in preschool children using forced oscillations. Thorax. 2007; 62(9): 814–819.
  26. Postma DS, Brightling C, Baldi S, et al. ATLANTIS study group. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. Lancet Respir Med. 2019; 7(5): 402–416.
  27. Kuo CR, Jabbal S, Lipworth B. I Say IOS You Say AOS: Comparative Bias in Respiratory Impedance Measurements. Lung. 2019; 197(4): 473–481.
  28. Soares M, Richardson M, Thorpe J, et al. Comparison of Forced and Impulse Oscillometry Measurements: A Clinical Population and Printed Airway Model Study. Sci Rep. 2019; 9(1): 2130.
  29. Tanimura K, Hirai T, Sato S, et al. Comparison of two devices for respiratory impedance measurement using a forced oscillation technique: basic study using phantom models. J Physiol Sci. 2014; 64(5): 377–382.
  30. Bell AJ, Foy BH, Richardson M, et al. Functional CT imaging for identification of the spatial determinants of small-airways disease in adults with asthma. J Allergy Clin Immunol. 2019; 144(1): 83–93.
  31. Foy BH, Soares M, Bordas R, et al. Lung Computational Models and the Role of the Small Airways in Asthma. Am J Respir Crit Care Med. 2019; 200(8): 982–991.
  32. Anderson WJ, Zajda E, Lipworth BJ. Are we overlooking persistent small airways dysfunction in community-managed asthma? Ann Allergy Asthma Immunol. 2012; 109(3): 185–189.e2.
  33. Manoharan A, Anderson WJ, Lipworth J, et al. Small airway dysfunction is associated with poorer asthma control. Eur Respir J. 2014; 44(5): 1353–1355.
  34. Shi Y, Aledia AS, Galant SP, et al. Peripheral airway impairment measured by oscillometry predicts loss of asthma control in children. J Allergy Clin Immunol. 2013; 131(3): 718–723.
  35. Gobbi A, Dellacá RL, King G, et al. Toward Predicting Individual Risk in Asthma Using Daily Home Monitoring of Resistance. Am J Respir Crit Care Med. 2017; 195(2): 265–267.
  36. Czövek D, Shackleton C, Hantos Z, et al. Tidal changes in respiratory resistance are sensitive indicators of airway obstruction in children. Thorax. 2016; 71(10): 907–915.
  37. Chiabai J, Friedrich FO, Fernandes MT, et al. Intrabreath oscillometry is a sensitive test for assessing disease control in adults with severe asthma. Ann Allergy Asthma Immunol. 2021; 127(3): 372–377.
  38. Jetmalani K, Brown NJ, Boustany C, et al. Normal limits for oscillometric bronchodilator responses and relationships with clinical factors. ERJ Open Res. 2021; 7(4).
  39. Johansson H, Wollmer P, Sundström J, et al. Bronchodilator response in FOT parameters in middle-aged adults from SCAPIS: normal values and relationship to asthma and wheezing. Eur Respir J. 2021; 58(3).
  40. Marotta A, Klinnert MD, Price MR, et al. Impulse oscillometry provides an effective measure of lung dysfunction in 4-year-old children at risk for persistent asthma. J Allergy Clin Immunol. 2003; 112(2): 317–322.
  41. Song TW, Kim KW, Kim ES, et al. Utility of impulse oscillometry in young children with asthma. Pediatr Allergy Immunol. 2008; 19(8): 763–768.
  42. Oostveen E, Dom S, Desager K, et al. Lung function and bronchodilator response in 4-year-old children with different wheezing phenotypes. Eur Respir J. 2010; 35(4): 865–872.
  43. Harrison Jo, Gibson AM, Johnson K, et al. Lung function in preschool children with a history of wheezing measured by forced oscillation and plethysmographic specific airway resistance. Pediatr Pulmonol. 2010; 45(11): 1049–1056.
  44. Cottee AM, Seccombe LM, Thamrin C, et al. Bronchodilator Response Assessed by the Forced Oscillation Technique Identifies Poor Asthma Control With Greater Sensitivity Than Spirometry. Chest. 2020; 157(6): 1435–1441.
  45. Kuo CR, Chan R, Lipworth B. Impulse oscillometry bronchodilator response and asthma control. J Allergy Clin Immunol Pract. 2020; 8(10): 3610–3612.
  46. Bohadana AB, Peslin R, Megherbi SE, et al. Dose-response slope of forced oscillation and forced expiratory parameters in bronchial challenge testing. Eur Respir J. 1999; 13(2): 295–300.
  47. Broeders ME, Molema J, Hop WCJ, et al. Bronchial challenge, assessed with forced expiratory manoeuvres and airway impedance. Respir Med. 2005; 99(8): 1046–1052.
  48. Imahashi Y, Kanazawa H, Ijiri N, et al. Analysis of the contributing factors to airway hyperresponsiveness by a forced oscillation technique in patients with asthma. Osaka City Med J. 2014; 60(2): 53–62.
  49. McClean MA, Htun C, King GG, et al. Cut-points for response to mannitol challenges using the forced oscillation technique. Respir Med. 2011; 105(4): 533–540.
  50. Naji N, Keung E, Kane J, et al. Comparison of changes in lung function measured by plethymography and IOS after bronchoprovocation. Respir Med. 2013; 107(4): 503–510.
  51. Rozen D, Bracamonte M, Sergysels R. Comparison between plethysmographic and forced oscillation techniques in the assessment of airflow obstruction. Respiration. 1983; 44(3): 197–203.
  52. Schmekel B, Smith HJ. The diagnostic capacity of forced oscillation and forced expiration techniques in identifying asthma by isocapnic hyperpnoea of cold air. Eur Respir J. 1997; 10(10): 2243–2249.
  53. Suzuki S, Chonan T, Sasaki H, et al. Time-course of response in exercise-induced bronchoconstriction. Ann Allergy. 1984; 53(4): 341–346.
  54. van Noord JA, Clement J, van de Woestijne KP, et al. Total respiratory resistance and reactance as a measurement of response to bronchial challenge with histamine. Am Rev Respir Dis. 1989; 139(4): 921–926.
  55. Wesseling GJ, Vanderhoven-Augustin IM, Wouters EF. Forced oscillation technique and spirometry in cold air provocation tests. Thorax. 1993; 48(3): 254–259.
  56. Wouters EF, Polko AH, Schouten HJ, et al. Contribution of impedance measurement of the respiratory system to bronchial challenge tests. J Asthma. 1988; 25(5): 259–267.
  57. Mansur AH, Manney S, Ayres JG. Methacholine-induced asthma symptoms correlate with impulse oscillometry but not spirometry. Respir Med. 2008; 102(1): 42–49.
  58. Tsurikisawa N, Oshikata C, Tsuburai T, et al. Physiologic airway responses to inhaled histamine and acetylcholine in patients with mild asthma as analyzed by forced oscillation. Arerugi. 2015; 64(7): 952–970.
  59. Alblooshi AS, Simpson SJ, Stick SM, et al. The safety and feasibility of the inhaled mannitol challenge test in young children. Eur Respir J. 2013; 42(5): 1420–1423.
  60. Bisgaard H, Klug B. Lung function measurement in awake young children. Eur Respir J. 1995; 8(12): 2067–2075.
  61. Hall GL, Gangell C, Fukushima T, et al. Application of a shortened inhaled adenosine-5'-monophosphate challenge in young children using the forced oscillation technique. Chest. 2009; 136(1): 184–189.
  62. Kalliola S, Malmberg LP, Kajosaari M, et al. Assessing direct and indirect airway hyperresponsiveness in children using impulse oscillometry. Ann Allergy Asthma Immunol. 2014; 113(2): 166–172.
  63. Malmberg LP, Mäkelä MJ, Mattila PS, et al. Exercise-induced changes in respiratory impedance in young wheezy children and nonatopic controls. Pediatr Pulmonol. 2008; 43(6): 538–544.
  64. Nielsen KG, Bisgaard H. The effect of inhaled budesonide on symptoms, lung function, and cold air and methacholine responsiveness in 2- to 5-year-old asthmatic children. Am J Respir Crit Care Med. 2000; 162(4 Pt 1): 1500–1506.
  65. Schulze J, Smith HJ, Fuchs J, et al. Methacholine challenge in young children as evaluated by spirometry and impulse oscillometry. Respir Med. 2012; 106(5): 627–634.
  66. Marchal F, Mazurek H, Habib M, et al. Input respiratory impedance to estimate airway hyperreactivity in children: standard method versus head generator. Eur Respir J. 1994; 7(3): 601–607.
  67. Pellegrino R, Sterk PJ, Sont JK, et al. Assessing the effect of deep inhalation on airway calibre: a novel approach to lung function in bronchial asthma and COPD. Eur Respir J. 1998; 12(5): 1219–1227.
  68. Skloot G, Togias A. Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin Rev Allergy Immunol. 2003; 24(1): 55–72.
  69. Lutchen KR, Jensen A, Atileh H, et al. Airway constriction pattern is a central component of asthma severity: the role of deep inspirations. Am J Respir Crit Care Med. 2001; 164(2): 207–215.
  70. Weersink EJ, vd Elshout FJ, van Herwaarden CV, et al. Bronchial responsiveness to histamine and methacholine measured with forced expirations and with the forced oscillation technique. Respir Med. 1995; 89(5): 351–356.
  71. Skloot G, Permutt S, Togias A. Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration. J Clin Invest. 1995; 96(5): 2393–2403.
  72. Choi SH, Sheen YHo, Kim MiAe, et al. Clinical Implications of Oscillatory Lung Function during Methacholine Bronchoprovocation Testing of Preschool Children. Biomed Res Int. 2017; 2017: 9460190.
  73. Seccombe LM, Peters MJ, Buddle L, et al. Exercise-Induced Bronchoconstriction Identified Using the Forced Oscillation Technique. Front Physiol. 2019; 10: 1411.
  74. Berger KI, Kalish S, Shao Y, et al. Isolated small airway reactivity during bronchoprovocation as a mechanism for respiratory symptoms in WTC dust-exposed community members. Am J Ind Med. 2016; 59(9): 767–776.
  75. Segal LN, Goldring RM, Oppenheimer BW, et al. Disparity between proximal and distal airway reactivity during methacholine challenge. COPD. 2011; 8(3): 145–152.
  76. Hoshino M. Comparison of effectiveness in ciclesonide and fluticasone propionate on small airway function in mild asthma. Allergol Int. 2010; 59(1): 59–66.
  77. Yamaguchi M, Niimi A, Ueda T, et al. Effect of inhaled corticosteroids on small airways in asthma: investigation using impulse oscillometry. Pulm Pharmacol Ther. 2009; 22(4): 326–332.
  78. Moeller A, Lehmann A, Knauer N, et al. Effects of montelukast on subjective and objective outcome measures in preschool asthmatic children. Pediatr Pulmonol. 2008; 43(2): 179–186.
  79. Hozawa S, Terada M, Hozawa M. Comparison of budesonide/formoterol Turbuhaler with fluticasone/salmeterol Diskus for treatment effects on small airway impairment and airway inflammation in patients with asthma. Pulm Pharmacol Ther. 2011; 24(5): 571–576.
  80. Houghton CM, Lawson N, Borrill ZL, et al. Comparison of the effects of salmeterol/fluticasone propionate with fluticasone propionate on airway physiology in adults with mild persistent asthma. Respir Res. 2007; 8(1): 52.
  81. Larsen GL, Morgan W, Heldt GP, et al. Childhood Asthma Research and Education Network of the National Heart, Lung, and Blood Institute. Impulse oscillometry versus spirometry in a long-term study of controller therapy for pediatric asthma. J Allergy Clin Immunol. 2009; 123(4): 861–867.e1.
  82. Tang FSM, Rutting S, Farrow CE, et al. Ventilation heterogeneity and oscillometry predict asthma control improvement following step-up inhaled therapy in uncontrolled asthma. Respirology. 2020; 25(8): 827–835.
  83. Sugawara H, Saito A, Yokoyama S, et al. A retrospective analysis of usefulness of impulse oscillometry system in the treatment of asthma. Respir Res. 2020; 21(1): 226.
  84. Antonicelli L, Tontini C, Marchionni A, et al. Forced oscillation technique as method to document and monitor the efficacy of mepolizumab in treating severe eosinophilic asthma. Allergy. 2020; 75(2): 433–436.
  85. Kerby GS, Rosenfeld M, Ren CL, et al. Lung function distinguishes preschool children with CF from healthy controls in a multi-center setting. Pediatr Pulmonol. 2012; 47(6): 597–605.
  86. Nielsen KG, Pressler T, Klug B, et al. Serial lung function and responsiveness in cystic fibrosis during early childhood. Am J Respir Crit Care Med. 2004; 169(11): 1209–1216.
  87. Solymar L, Aronsson PH, Sixt R. The forced oscillation technique in children with respiratory disease. Pediatr Pulmonol. 1985; 1(5): 256–261.
  88. Gangell CL, Horak F, Patterson HJ, et al. Respiratory impedance in children with cystic fibrosis using forced oscillations in clinic. Eur Respir J. 2007; 30(5): 892–897.
  89. Moreau L, Crenesse D, Berthier F, et al. Relationship between impulse oscillometry and spirometric indices in cystic fibrosis children. Acta Paediatr. 2009; 98(6): 1019–1023.
  90. Ramsey KA, Ranganathan SC, Gangell CL, et al. AREST CF. Impact of lung disease on respiratory impedance in young children with cystic fibrosis. Eur Respir J. 2015; 46(6): 1672–1679.
  91. Ren CL, Rosenfeld M, Mayer OH, et al. Analysis of the associations between lung function and clinical features in preschool children with cystic fibrosis. Pediatr Pulmonol. 2012; 47(6): 574–581.
  92. Zannin E, Nyilas S, Ramsey KA, et al. Within-breath changes in respiratory system impedance in children with cystic fibrosis. Pediatr Pulmonol. 2019; 54(6): 737–742.
  93. Lima AN, Faria ACD, Lopes AJ, et al. Forced oscillations and respiratory system modeling in adults with cystic fibrosis. Biomed Eng Online. 2015; 14: 11.
  94. Ribeiro CO, Faria AC, Lopes AJ, et al. Forced oscillation technique for early detection of the effects of smoking and COPD: contribution of fractional-order modeling. Int J Chron Obstruct Pulmon Dis. 2018; 13: 3281–3295.
  95. Faria AC, Costa AA, Lopes AJ, et al. Forced oscillation technique in the detection of smoking-induced respiratory alterations: diagnostic accuracy and comparison with spirometry. Clinics (Sao Paulo). 2010; 65(12): 1295–1304.
  96. Faria ACD, Lopes AJ, Jansen JM, et al. Evaluating the forced oscillation technique in the detection of early smoking-induced respiratory changes. Biomed Eng Online. 2009; 8: 22.
  97. Jetmalani K, Thamrin C, Farah CS, et al. Peripheral airway dysfunction and relationship with symptoms in smokers with preserved spirometry. Respirology. 2018; 23(5): 512–518.
  98. Shinke H, Yamamoto M, Hazeki N, et al. Visualized changes in respiratory resistance and reactance along a time axis in smokers: a cross-sectional study. Respir Investig. 2013; 51(3): 166–174.
  99. Crim C, Celli B, Edwards LD, et al. ECLIPSE investigators. Respiratory system impedance with impulse oscillometry in healthy and COPD subjects: ECLIPSE baseline results. Respir Med. 2011; 105(7): 1069–1078.
  100. Di Mango AM, Lopes AJ, Jansen JM, et al. Changes in respiratory mechanics with increasing degrees of airway obstruction in COPD: detection by forced oscillation technique. Respir Med. 2006; 100(3): 399–410.
  101. Milne S, Jetmalani K, Chapman DG, et al. Respiratory system reactance reflects communicating lung volume in chronic obstructive pulmonary disease. J Appl Physiol (1985). 2019; 126(5): 1223–1231.
  102. Milne S, Hammans C, Watson S, et al. Bronchodilator Responses in Respiratory Impedance, Hyperinflation and Gas Trapping in COPD. COPD. 2018; 15(4): 341–349.
  103. Tse HN, Tseng CZ, Wong KY, et al. Accuracy of forced oscillation technique to assess lung function in geriatric COPD population. Int J Chron Obstruct Pulmon Dis. 2016; 11: 1105–1118.
  104. Eddy RL, Westcott A, Maksym GN, et al. Oscillometry and pulmonary magnetic resonance imaging in asthma and COPD. Physiol Rep. 2019; 7(1): e13955.
  105. Ostridge K, Gove K, Paas KHW, et al. Using Novel Computed Tomography Analysis to Describe the Contribution and Distribution of Emphysema and Small Airways Disease in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc. 2019; 16(8): 990–997.
  106. Su ZQ, Guan WJ, Li SY, et al. Significances of spirometry and impulse oscillometry for detecting small airway disorders assessed with endobronchial optical coherence tomography in COPD. Int J Chron Obstruct Pulmon Dis. 2018; 13: 3031–3044.
  107. Zimmermann SC, Thamrin C, Chan ASl, et al. Relationships Between Forced Oscillatory Impedance and 6-minute Walk Distance After Pulmonary Rehabilitation in COPD. Int J Chron Obstruct Pulmon Dis. 2020; 15: 157–166.
  108. Amaral JLM, Lopes AJ, Faria ACD, et al. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Comput Methods Programs Biomed. 2015; 118(2): 186–197.
  109. Borrill ZL, Houghton CM, Tal-Singer R, et al. The use of plethysmography and oscillometry to compare long-acting bronchodilators in patients with COPD. Br J Clin Pharmacol. 2008; 65(2): 244–252.
  110. Abe T, Setoguchi Y, Kono Y, et al. Effects of inhaled tiotropium plus transdermal tulobuterol versus tiotropium alone on impulse oscillation system (IOS)-assessed measures of peripheral airway resistance and reactance, lung function and quality of life in patients with COPD: a randomized crossover study. Pulm Pharmacol Ther. 2011; 24(5): 617–624.
  111. Molino A, Simioli F, Stanziola AA, et al. Effects of combination therapy indacaterol/glycopyrronium versus tiotropium on moderate to severe COPD: evaluation of impulse oscillometry and exacerbation rate. Multidiscip Respir Med. 2017; 12: 25.
  112. Dellacà RL, Pompilio PP, Walker PP, et al. Effect of bronchodilation on expiratory flow limitation and resting lung mechanics in COPD. Eur Respir J. 2009; 33(6): 1329–1337.
  113. Diba C, King GG, Berend N, et al. Improved respiratory system conductance following bronchodilator predicts reduced exertional dyspnoea. Respir Med. 2011; 105(9): 1345–1351.
  114. Timmins SC, Diba C, Schoeffel RE, et al. Changes in oscillatory impedance and nitrogen washout with combination fluticasone/salmeterol therapy in COPD. Respir Med. 2014; 108(2): 344–350.
  115. Jetmalani K, Timmins S, Brown NJ, et al. Expiratory flow limitation relates to symptoms during COPD exacerbations requiring hospital admission. Int J Chron Obstruct Pulmon Dis. 2015; 10: 939–945.
  116. Johnson MK, Birch M, Carter R, et al. Measurement of physiological recovery from exacerbation of chronic obstructive pulmonary disease using within-breath forced oscillometry. Thorax. 2007; 62(4): 299–306.
  117. Stevenson NJ, Walker PP, Costello RW, et al. Lung mechanics and dyspnea during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005; 172(12): 1510–1516.
  118. da Costa GM, Faria AC, Di Mango AM, et al. Respiratory impedance and response to salbutamol in healthy individuals and patients with COPD. Respiration. 2014; 88(2): 101–111.
  119. Ohishi J, Kurosawa H, Ogawa H, et al. Application of impulse oscillometry for within-breath analysis in patients with chronic obstructive pulmonary disease: pilot study. BMJ Open. 2011; 1(2): e000184.
  120. Silva KK, Faria AC, Lopes AJ, et al. Within-breath respiratory impedance and airway obstruction in patients with chronic obstructive pulmonary disease. Clinics (Sao Paulo). 2015; 70(7): 461–469.
  121. Yamauchi Y, Kohyama T, Jo T, et al. Dynamic change in respiratory resistance during inspiratory and expiratory phases of tidal breathing in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2012; 7: 259–269.
  122. Kurosawa H, Kohzuki M. Images in clinical medicine. Dynamic airway narrowing. N Engl J Med. 2004; 350(10): 1036.
  123. Dellacà RL, Santus P, Aliverti A, et al. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004; 23(2): 232–240.
  124. Dellacà RL, Duffy N, Pompilio PP, et al. Expiratory flow limitation detected by forced oscillation and negative expiratory pressure. Eur Respir J. 2007; 29(2): 363–374.
  125. Aarli BB, Calverley PMA, Jensen RL, et al. Variability of within-breath reactance in COPD patients and its association with dyspnoea. Eur Respir J. 2015; 45(3): 625–634.
  126. Aarli BB, Calverley PMa, Jensen RL, et al. The association of tidal EFL with exercise performance, exacerbations, and death in COPD. Int J Chron Obstruct Pulmon Dis. 2017; 12: 2179–2188.
  127. Yamagami H, Tanaka A, Kishino Y, et al. Association between respiratory impedance measured by forced oscillation technique and exacerbations in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2018; 13: 79–89.
  128. Milesi I, Porta R, Barbano L, et al. Automatic tailoring of the lowest PEEP to abolish tidal expiratory flow limitation in seated and supine COPD patients. Respir Med. 2019; 155: 13–18.
  129. Zannin E, Milesi I, Porta R, et al. Effect of nocturnal EPAP titration to abolish tidal expiratory flow limitation in COPD patients with chronic hypercapnia: a randomized, cross-over pilot study. Respir Res. 2020; 21(1): 301.
  130. Zimmermann SC, Huvanandana J, Nguyen CD, et al. Day-to-day variability of forced oscillatory mechanics for early detection of acute exacerbations in COPD. Eur Respir J. 2020; 56(3).
  131. Cairncross A, Jones R, James A, et al. Airway wall response to deep inspiration in COPD. 5.2 Monitoring Airway Disease. 2016.
  132. Scichilone N, La Sala A, Bellia M, et al. The airway response to deep inspirations decreases with COPD severity and is associated with airway distensibility assessed by computed tomography. J Appl Physiol (1985). 2008; 105(3): 832–838.
  133. Rutting S, Badal T, Wallis R, et al. Long-term variability of oscillatory impedance in stable obstructive airways disease. Eur Respir J. 2021; 58(1).
  134. Timmins SC, Coatsworth N, Palnitkar G, et al. Day-to-day variability of oscillatory impedance and spirometry in asthma and COPD. Respir Physiol Neurobiol. 2013; 185(2): 416–424.
  135. Lee E, Yoon J, Cho HJ, et al. Respiratory reactance in children aged three to five years with postinfectious bronchiolitis obliterans is higher than in those with asthma. Acta Paediatr. 2017; 106(1): 81–86.
  136. Cho E, Wu JKY, Birriel DC, et al. Airway Oscillometry Detects Spirometric-Silent Episodes of Acute Cellular Rejection. Am J Respir Crit Care Med. 2020; 201(12): 1536–1544.
  137. Hamakawa H, Sakai H, Takahashi A, et al. Forced oscillation technique as a non-invasive assessment for lung transplant recipients. Adv Exp Med Biol. 2010; 662: 293–298.
  138. Ochman M, Wojarski J, Wiórek A, et al. Usefulness of the Impulse Oscillometry System in Graft Function Monitoring in Lung Transplant Recipients. Transplant Proc. 2018; 50(7): 2070–2074.
  139. Mahadev S, Farah CS, King GG, et al. Obesity, expiratory flow limitation and asthma symptoms. Pulm Pharmacol Ther. 2013; 26(4): 438–443.
  140. Mahadev S, Salome CM, Berend N, et al. The effect of low lung volume on airway function in obesity. Respir Physiol Neurobiol. 2013; 188(2): 192–199.
  141. Salome CM, Munoz PA, Berend N, et al. Effect of obesity on breathlessness and airway responsiveness to methacholine in non-asthmatic subjects. Int J Obes (Lond). 2008; 32(3): 502–509.
  142. Al-Alwan A, Bates JHT, Chapman DG, et al. The nonallergic asthma of obesity. A matter of distal lung compliance. Am J Respir Crit Care Med. 2014; 189(12): 1494–1502.
  143. Oppenheimer BW, Berger KI, Ali S, et al. Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity. PLoS One. 2016; 11(4): e0152769.
  144. Oppenheimer BW, Berger KI, Segal LN, et al. Airway dysfunction in obesity: response to voluntary restoration of end expiratory lung volume. PLoS One. 2014; 9(2): e88015.
  145. Oppenheimer BW, Macht R, Goldring RM, et al. Distal airway dysfunction in obese subjects corrects after bariatric surgery. Surg Obes Relat Dis. 2012; 8(5): 582–589.
  146. Peters U, Dechman G, Hernandez P, et al. Improvement in upright and supine lung mechanics with bariatric surgery affects bronchodilator responsiveness and sleep quality. J Appl Physiol (1985). 2018; 125(4): 1305–1314.
  147. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol (1985). 2010; 108(1): 206–211.
  148. Dattani RS, Swerner CB, Stradling JR, et al. Exploratory study into the effect of abdominal mass loading on airways resistance and ventilatory failure. BMJ Open Respir Res. 2016; 3(1): e000138.
  149. Yap JC, Watson RA, Gilbey S, et al. Effects of posture on respiratory mechanics in obesity. J Appl Physiol (1985). 1995; 79(4): 1199–1205.
  150. Zerah F, Harf A, Perlemuter L, et al. Effects of obesity on respiratory resistance. Chest. 1993; 103(5): 1470–1476.
  151. Watson RA, Pride NB. Postural changes in lung volumes and respiratory resistance in subjects with obesity. J Appl Physiol (1985). 2005; 98(2): 512–517.
  152. Rochester DF, Enson Y. Current concepts in the pathogenesis of the obesity-hypoventilation syndrome. Mechanical and circulatory factors. Am J Med. 1974; 57(3): 402–420.
  153. Kaltman AJ, Goldring RM. Role of circulatory congestion in the cardiorespiratory failure of obesity. Am J Med. 1976; 60(5): 645–653.
  154. Peters U, Hernandez P, Dechman G, et al. Early detection of changes in lung mechanics with oscillometry following bariatric surgery in severe obesity. Appl Physiol Nutr Metab. 2016; 41(5): 538–547.
  155. Skloot G, Schechter C, Desai A, et al. Impaired response to deep inspiration in obesity. J Appl Physiol (1985). 2011; 111(3): 726–734.
  156. Forno E, Weiner DJ, Mullen J, et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am J Respir Crit Care Med. 2017; 195(3): 314–323.
  157. Jones MH, Roncada C, Fernandes MT, et al. Asthma and Obesity in Children Are Independently Associated with Airway Dysanapsis. Front Pediatr. 2017; 5: 270.
  158. Ekström S, Hallberg J, Kull I, et al. Body mass index status and peripheral airway obstruction in school-age children: a population-based cohort study. Thorax. 2018; 73(6): 538–545.
  159. van Noord JA, Clement J, Cauberghs M, et al. Total respiratory resistance and reactance in patients with diffuse interstitial lung disease. European Respiratory Journal. 1989; 2(9): 846–852.
  160. Sokai R, Ito S, Iwano S, et al. Respiratory mechanics measured by forced oscillation technique in rheumatoid arthritis-related pulmonary abnormalities: frequency-dependence, heterogeneity and effects of smoking. Springerplus. 2016; 5: 335.
  161. de Mesquita Júnior JA, Lopes AJ, Jansen JM, et al. Using the forced oscillation technique to evaluate respiratory resistance in individuals with silicosis. J Bras Pneumol. 2006; 32(3): 213–220.
  162. Sugiyama A, Hattori N, Haruta Y, et al. Characteristics of inspiratory and expiratory reactance in interstitial lung disease. Respir Med. 2013; 107(6): 875–882.
  163. Aronsson D, Hesselstrand R, Bozovic G, et al. Airway resistance and reactance are affected in systemic sclerosis. Eur Clin Respir J. 2015; 2: 28667.
  164. Fujii M, Shirai T, Mori K, et al. Inspiratory resonant frequency of forced oscillation technique as a predictor of the composite physiologic index in interstitial lung disease. Respir Physiol Neurobiol. 2015; 207: 22–27.
  165. Lopes AJ, Mogami R, Camilo GB, et al. Relationships between the pulmonary densitometry values obtained by CT and the forced oscillation technique parameters in patients with silicosis. Br J Radiol. 2015; 88(1049): 20150028.
  166. Takeichi N, Yamazaki H, Fujimoto K. Comparison of impedance measured by the forced oscillation technique and pulmonary functions, including static lung compliance, in obstructive and interstitial lung disease. Int J Chron Obstruct Pulmon Dis. 2019; 14: 1109–1118.
  167. De Troyer A, Borenstein S, Cordier R. Analysis of lung volume restriction in patients with respiratory muscle weakness. Thorax. 1980; 35(8): 603–610.
  168. Gibson GJ, Pride NB, Davis JN, et al. Pulmonary mechanics in patients with respiratory muscle weakness. Am Rev Respir Dis. 1977; 115(3): 389–395.
  169. Allen J. Pulmonary complications of neuromuscular disease: a respiratory mechanics perspective. Paediatr Respir Rev. 2010; 11(1): 18–23.
  170. Al-Alwan A, Kaminsky D. Vocal cord dysfunction in athletes: clinical presentation and review of the literature. Phys Sportsmed. 2012; 40(2): 22–27.
  171. Rigau J, Farré R, Trepat X, et al. Oscillometric assessment of airway obstruction in a mechanical model of vocal cord dysfunction. J Biomech. 2004; 37(1): 37–43.
  172. Farré R, Navajas D. Forced oscillation: A poorly exploited tool for simply assessing respiratory function in children. Respirology. 2016; 21(6): 982–983.
  173. Komarow HD, Young M, Nelson C, et al. Vocal cord dysfunction as demonstrated by impulse oscillometry. J Allergy Clin Immunol Pract. 2013; 1(4): 387–393.
  174. Bey A, Botti S, Coutier-Marie L, et al. Bronchial or Laryngeal Obstruction Induced by Exercise? Front Pediatr. 2017; 5: 150.
  175. Ioan I, Marchal F, Coffinet L, et al. Breathing-related changes of respiratory resistance in vocal cord dysfunction. Respirology. 2016; 21(6): 1134–1136.
  176. Schweitzer C, Chone C, Marchal F. Influence of data filtering on reliability of respiratory impedance and derived parameters in children. Pediatr Pulmonol. 2003; 36(6): 502–508.
  177. Higenbottam T. Narrowing of glottis opening in humans associated with experimentally induced bronchoconstriction. J Appl Physiol Respir Environ Exerc Physiol. 1980; 49(3): 403–407.
  178. Farré R, Peslin R, Rotger M, et al. Inspiratory dynamic obstruction detected by forced oscillation during CPAP. A model study. Am J Respir Crit Care Med. 1997; 155(3): 952–956.
  179. Farré R, Montserrat JM, Navajas D. Noninvasive monitoring of respiratory mechanics during sleep. Eur Respir J. 2004; 24(6): 1052–1060.
  180. Farré R, Montserrat JM, Navajas D, et al. New technologies to detect static and dynamic upper airway obstruction during sleep. Sleep Breath. 2001; 5(4): 193–206.
  181. Lorino AM, Lofaso F, Dahan E, et al. Respiratory impedance response to continuous negative airway pressure in awake controls and OSAS. Eur Respir J. 2001; 17(1): 71–78.
  182. Cao Ju, Que C, Wang G, et al. Effect of posture on airway resistance in obstructive sleep apnea-hypopnea syndrome by means of impulse oscillation. Respiration. 2009; 77(1): 38–43.
  183. Badia JR, Farré R, Montserrat JM, et al. Forced oscillation technique for the evaluation of severe sleep apnoea/hypopnoea syndrome: a pilot study. Eur Respir J. 1998; 11(5): 1128–1134.
  184. Badia JR, Farré R, Rigau J, et al. Forced oscillation technique for the evaluation of severe sleep apnoea/hypopnoea syndrome: a pilot study. Eur Respir J. 1998; 11(5): 1128–1134.
  185. Jobin V, Rigau J, Beauregard J, et al. Evaluation of upper airway patency during Cheyne-Stokes breathing in heart failure patients. Eur Respir J. 2012; 40(6): 1523–1530.
  186. Navajas D, Farré R, Rotger M, et al. Assessment of airflow obstruction during CPAP by means of forced oscillation in patients with sleep apnea. Am J Respir Crit Care Med. 1998; 157(5 Pt 1): 1526–1530.
  187. Cao X, Bradley TD, Bhatawadekar SA, et al. Effect of Simulated Obstructive Apnea on Thoracic Fluid Volume and Airway Narrowing in Asthma. Am J Respir Crit Care Med. 2021; 203(7): 908–910.
  188. Schermer T, Malbon W, Newbury W, et al. Spirometry and impulse oscillometry (IOS) for detection of respiratory abnormalities in metropolitan firefighters. Respirology. 2010; 15(6): 975–985.
  189. Friedman SM, Maslow CB, Reibman J, et al. Case-control study of lung function in World Trade Center Health Registry area residents and workers. Am J Respir Crit Care Med. 2011; 184(5): 582–589.
  190. Oppenheimer BW, Goldring RM, Herberg ME, et al. Distal airway function in symptomatic subjects with normal spirometry following World Trade Center dust exposure. Chest. 2007; 132(4): 1275–1282.
  191. Keman S, Willemse B, Wesseling GJ, et al. A five year follow-up of lung function among chemical workers using flow-volume and impedance measurements. Eur Respir J. 1996; 9(10): 2109–2115.
  192. Shao J, Zosky GR, Hall GL, et al. Early life exposure to coal mine fire smoke emissions and altered lung function in young children. Respirology. 2020; 25(2): 198–205.
  193. Schultz ES, Hallberg J, Gustafsson PM, et al. Early life exposure to traffic-related air pollution and lung function in adolescence assessed with impulse oscillometry. J Allergy Clin Immunol. 2016; 138(3): 930–932.e5.
  194. Gupta N, Sachdev A, Gupta D. Oscillometry-A reasonable option to monitor lung functions in the era of COVID-19 pandemic. Pediatr Pulmonol. 2021; 56(1): 14–15.
  195. Van de Woestijne KP. The forced oscillation technique in intubated, mechanically-ventilated patients. Eur Respir J. 1993; 6(6): 767–769.
  196. Farré R. Monitoring Respiratory Mechanics by Forced Oscillation in Ventilated Patients. Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E. 2001: 195–204.
  197. Navajas D, Farre R. Forced oscillation assessment of respiratory mechanics in ventilated patients. Crit Care. 2001; 5: 3–9.
  198. Beydon L, Malassiné P, Lorino AM, et al. Respiratory resistance by end-inspiratory occlusion and forced oscillations in intubated patients. J Appl Physiol (1985). 1996; 80(4): 1105–1111.
  199. Peslin R, da Silva JF, Chabot F, et al. Respiratory mechanics studied by multiple linear regression in unsedated ventilated patients. Eur Respir J. 1992; 5(7): 871–878.
  200. Peslin R, Felicio da Silva J, Duvivier C, et al. Respiratory mechanics studied by forced oscillations during artificial ventilation. Eur Respir J. 1993; 6(6): 772–784.
  201. Farré R, Ferrer M, Rotger M, et al. Servocontrolled generator to measure respiratory impedance from 0.25 to 26 Hz in ventilated patients at different PEEP levels. Eur Respir J. 1995; 8(7): 1222–1227.
  202. Kaczka DW, Ingenito EP, Lutchen KR. Technique to determine inspiratory impedance during mechanical ventilation: implications for flow limited patients. Ann Biomed Eng. 1999; 27(3): 340–355.
  203. Navajas D, Farré R, Canet J, et al. Respiratory input impedance in anesthetized paralyzed patients. J Appl Physiol (1985). 1990; 69(4): 1372–1379.
  204. Albu G, Babik B, Késmárky K, et al. Changes in airway and respiratory tissue mechanics after cardiac surgery. Ann Thorac Surg. 2010; 89(4): 1218–1226.
  205. Babik B, Peták F, Asztalos T, et al. Components of respiratory resistance monitored in mechanically ventilated patients. Eur Respir J. 2002; 20(6): 1538–1544.
  206. Barker S, Tremper K. Pressure Losses Of Endotracheal Tubes. Journal of Clinical Engineering. 1986; 11(5): 371–376.
  207. Hentschel R, Buntzel J, Guttmann J, et al. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants-the impact of ventilator settings on tracheal pressure swings. Physiol Meas. 2011; 32(9): 1439–1451.
  208. Kaczka DW, Hager DN, Hawley ML, et al. Quantifying mechanical heterogeneity in canine acute lung injury: impact of mean airway pressure. Anesthesiology. 2005; 103(2): 306–317.
  209. Loring SH, Elliott EA, Drazen JM. Kinetic energy loss and convective acceleration in respiratory resistance measurements. Lung. 1979; 156(1): 33–42.
  210. Lorino AM, Beydon L, Mariette C, et al. A new correction technique for measuring respiratory impedance through an endotracheal tube. Eur Respir J. 1996; 9(5): 1079–1086.
  211. Navajas D, Farré R, Rotger M, et al. Recording pressure at the distal end of the endotracheal tube to measure respiratory impedance. Eur Respir J. 1989; 2(2): 178–184.
  212. Navalesi P, Hernandez P, Laporta D, et al. Influence of site of tracheal pressure measurement on in situ estimation of endotracheal tube resistance. J Appl Physiol (1985). 1994; 77(6): 2899–2906.
  213. Scholz AW, Weiler N, David M, et al. Respiratory mechanics measured by forced oscillations during mechanical ventilation through a tracheal tube. Physiol Meas. 2011; 32(5): 571–583.
  214. Schuessler TF, Bates JH. A computer-controlled research ventilator for small animals: design and evaluation. IEEE Trans Biomed Eng. 1995; 42(9): 860–866.
  215. Sullivan M, Paliotta J, Saklad M. Endotracheal tube as a factor in measurement of respiratory mechanics. J Appl Physiol. 1976; 41(4): 590–592.
  216. Kaczka DW, Ingenito EP, Body SC, et al. Inspiratory lung impedance in COPD: effects of PEEP and immediate impact of lung volume reduction surgery. J Appl Physiol (1985). 2001; 90(5): 1833–1841.
  217. Lorx A, Szabó B, Hercsuth M, et al. Low-frequency assessment of airway and tissue mechanics in ventilated COPD patients. J Appl Physiol (1985). 2009; 107(6): 1884–1892.
  218. Lorx A, Suki B, Hercsuth M, et al. Airway and tissue mechanics in ventilated patients with pneumonia. Respir Physiol Neurobiol. 2010; 171(2): 101–109.
  219. Farré R, Ferrer M, Rotger M, et al. Respiratory mechanics in ventilated COPD patients: forced oscillation versus occlusion techniques. Eur Respir J. 1998; 12(1): 170–176.
  220. Gauthier R, Beyaert C, Feillet F, et al. Respiratory oscillation mechanics in infants with bronchiolitis during mechanical ventilation. Pediatr Pulmonol. 1998; 25(1): 18–31, doi: 10.1002/(sici)1099-0496(199801)25:1<18::aid-ppul2>3.0.co;2-k.
  221. Dellaca RL, Andersson Olerud M, Zannin E, et al. Lung recruitment assessed by total respiratory system input reactance. Intensive Care Med. 2009; 35(12): 2164–2172.
  222. Kaczka DW, Cao K, Christensen GE, et al. Analysis of regional mechanics in canine lung injury using forced oscillations and 3D image registration. Ann Biomed Eng. 2011; 39(3): 1112–1124.
  223. Dellacà RL, Rotger M, Aliverti A, et al. Noninvasive detection of expiratory flow limitation in COPD patients during nasal CPAP. Eur Respir J. 2006; 27(5): 983–991.
  224. Suh ES, Pompilio P, Mandal S, et al. Autotitrating external positive end-expiratory airway pressure to abolish expiratory flow limitation during tidal breathing in patients with severe COPD: a physiological study. Eur Respir J. 2020; 56(3).
  225. Dellacà RL, Veneroni C, Vendettuoli V, et al. Relationship between respiratory impedance and positive end-expiratory pressure in mechanically ventilated neonates. Intensive Care Med. 2013; 39(3): 511–519.
  226. Raffaeli G, Veneroni C, Ghirardello S, et al. Role of Lung Function Monitoring by the Forced Oscillation Technique for Tailoring Ventilation and Weaning in Neonatal ECMO: New Insights From a Case Report. Front Pediatr. 2018; 6: 332.
  227. Vendettuoli V, Veneroni C, Zannin E, et al. Positional effects on lung mechanics of ventilated preterm infants with acute and chronic lung disease. Pediatr Pulmonol. 2015; 50(8): 798–804.
  228. Wallström L, Veneroni C, Zannin E, et al. Forced oscillation technique for optimising PEEP in ventilated extremely preterm infants. Eur Respir J. 2020; 55(5).
  229. Veneroni C, Wallström L, Sindelar R, et al. Oscillatory respiratory mechanics on the first day of life improves prediction of respiratory outcomes in extremely preterm newborns. Pediatr Res. 2019; 85(3): 312–317.
  230. Peterson-Carmichael S, Seddon PC, Cheifetz IM, et al. ATS/ERS Working Group on Infant and Young Children Pulmonary Function Testing. An Official American Thoracic Society/European Respiratory Society Workshop Report: Evaluation of Respiratory Mechanics and Function in the Pediatric and Neonatal Intensive Care Units. Ann Am Thorac Soc. 2016; 13(2): S1–11.
  231. Dellacà RL, Zannin E, Kostic P, et al. Optimisation of positive end-expiratory pressure by forced oscillation technique in a lavage model of acute lung injury. Intensive Care Med. 2011; 37(6): 1021–1030.
  232. Sellares J, Acerbi I, Loureiro H, et al. Respiratory impedance during weaning from mechanical ventilation in a mixed population of critically ill patients. Br J Anaesth. 2009; 103(6): 828–832.
  233. Kostic P, Zannin E, Andersson Olerud M, et al. Positive end-expiratory pressure optimization with forced oscillation technique reduces ventilator induced lung injury: a controlled experimental study in pigs with saline lavage lung injury. Crit Care. 2011; 15(3): R126.
  234. Zannin E, Dellaca RL, Kostic P, et al. Optimizing positive end-expiratory pressure by oscillatory mechanics minimizes tidal recruitment and distension: an experimental study in a lavage model of lung injury. Crit Care. 2012; 16(6): R217.
  235. Zannin E, Ventura ML, Dellacà RL, et al. Optimal mean airway pressure during high-frequency oscillatory ventilation determined by measurement of respiratory system reactance. Pediatr Res. 2014; 75(4): 493–499.
  236. Babik B, Asztalos T, Peták F, et al. Changes in respiratory mechanics during cardiac surgery. Anesth Analg. 2003; 96(5): 1280–1287.